SELECTION PRINCIPLES AND HYPERSPACE TOPOLOGIES IN CLOSURE SPACES #### Mila Mršević* and Milena Jelić ABSTRACT. Relations between closure-type properties of hyperspaces over a Čech closure space (X, u) and covering properties of (X, u) are investigated. #### Introduction - 1. An operator $u: \mathcal{P}(X) \to \mathcal{P}(X)$ defined on the power set $\mathcal{P}(X)$ of a set X satisfying the axioms: - (C1) $u(\emptyset) = \emptyset$, - (C2) $A \subset u(A)$ for every $A \subset X$, - (C3) $u(A \cup B) = u(A) \cup u(B)$ for all $A, B \subset X$, is called a $Cech\ closure\ operator$ and the pair (X,u) is a $Cech\ closure\ space$. For short, (X,u) will be noted by X as well, and called a $closure\ space$ or a space. A subset A is closed in (X, u) if u(A) = A holds. It is open if its complement is closed. The interior operator $\operatorname{int}_u : \mathcal{P}(X) \to \mathcal{P}(X)$ is defined by means of the closure operator in the usual way: $\operatorname{int}_u = c \circ u \circ c$, where $c : \mathcal{P}(X) \to \mathcal{P}(X)$ is the complement operator. A subset U is a neighborhood of a point x in X if $x \in \operatorname{int}_u U$ holds. A closure space (X, u) is T_1 if for each two distinct points in X the following holds: $(\{x\} \cap u(\{y\})) \cup (\{y\} \cap u(\{x\})) = \emptyset$ whenever $x \neq y$. It is equivalent to: every one-point subset of X is closed in (X, u). Received May 27, 2005. ²⁰⁰⁰ Mathematics Subject Classification: 54A05, 54B20, 54A25, 54D20. Key words and phrases: Čech closure space, hyperspace, Δ^+ -topology, \mathbf{Z}^+ -topology, upper Fell topology, upper Vietoris topology, selection principles, Δ -cover, ω -cover, κ -cover, Reznichenko property, Pytkeev property, Hurewicz property, groupability. ^{*}Supported by the Ministry of Science, Techology and Development, Republic of Serbia. A space (X, u) is T_2 (Hausdorff) if each two distinct points in X have disjoint neighborhoods. All considered spaces are T_1 . 2. A collection $\{G_{\alpha}\}$ is an *interior cover* of a set A in (X, u) if the collection $\{\operatorname{int}_{u}G_{\alpha}\}$ covers A. We suppose that the interior of every element of an interior cover is non-empty and that each cover is non-trivial, i.e., that the set X does not belong to the cover. A subset A in a space (X, u) is *compact* if every interior cover of A has a finite subcover. Let \mathcal{C} be a collection of subsets of X. An interior cover \mathcal{U} is a \mathcal{C} -cover of X if for every $C \in \mathcal{C} \setminus \{X\}$ there is a $U \in \mathcal{U}$ such that $C \subset \operatorname{int}_u U$ holds. The collection of all interior covers \mathcal{U} of (X, u) will be denoted by \mathcal{I} and of all interior \mathcal{C} -covers by \mathcal{IC} . The following notations are used: $$\mathcal{H} = \{ u(A) \mid A \subset X \}, \quad \mathcal{J} = \mathcal{H}^{c} = \{ \operatorname{int}_{u}(A) \mid A \subset X \},$$ $$\Phi_x = \{ A \subset X \mid x \in u(A) \setminus A \},\$$ $\mathbf{F}(X)$ the family of all finite subsets of X, $\mathbf{K}(X)$ the family of all compact subsets of X, $\mathbf{Q}(X)$ the family of all closed subsets of X. $\mathbf{F}(X)$ -, $\mathbf{K}(X)$ - and $\mathbf{Q}(X)$ -interior covers will be called ω -, κ - and ζ -covers of X, respectively. $\mathcal{I}\Omega$ stands for the collection of all ω -covers of X, $\mathcal{I}\mathcal{K}$ for the collection of all k-covers, and $\mathcal{I}\mathcal{Q}$ for the collection of all ζ -covers. For $A \subset X$ the usual notation is $A^+ = \{H \in \mathcal{H} \mid H \subset A\}$. To the end Δ and Σ are subcollections of \mathcal{H} closed for finite unions and containing all singletons. The *upper* Δ -topology for \mathcal{H} , denoted by Δ^+ , has for a base the collection $\{(D^c)^+ \mid D \in \Delta\} \cup \{\mathcal{H}\}$. Following [4], the $\mathbf{F}(X)^+$ -topology will be denoted by \mathbf{Z}^+ and the $\mathbf{K}(X)^+$ -topology, the upper Fell topology (or the co-compact topology), by \mathbf{F}^+ . Also, \mathbf{V}^+ will stand for the $\mathbf{Q}(X)^+$ -topology, the upper Vietoris topology. Let \mathcal{A} be a subcollection of \mathcal{H} . Each $A \in \mathcal{A}$ is of the form A = u(B). We pick one such B = B(A). The collection $\mathcal{U} = \{B(A)^c\}$ will be denoted by \mathcal{A}^C . The following is our key lemma and the constructions and notations introduced in it are used throughout the paper. - LEMMA. (i) Let (X, u) be a space, a subset $Y \in \mathcal{J}$, and \mathcal{U} be an interior Δ -cover of Y. Set $\mathcal{A} = \{(\operatorname{int}_u U)^c \mid U \in \mathcal{U}\} = \{u(U^c) \mid U \in \mathcal{U}\}$. Then $\mathcal{A} \subset \mathcal{H}$ holds and $Y^c \in \operatorname{cl}_{\Delta^+} \mathcal{A}$. - (ii) Conversely, having a collection $\mathcal{A} \subset \mathcal{H}$ and a set $H \in \mathcal{H}$ such that $H \in \operatorname{cl}_{\Delta^+} \mathcal{A}$, the collection $\mathcal{U} = \mathcal{A}^C$ is an interior Δ -cover of H^c . - *Proof.* (i) Let \mathcal{U} be an interior Δ -cover of Y and $(D^c)^+$ be a basic Δ^+ -neighborhood of Y^c . Since $D \subset Y$, there is a $U \in \mathcal{U}$ such that $D \subset \operatorname{int}_u U$ holds. Then $A = (\operatorname{int}_u U)^c \in \mathcal{A}$ and $A \subset D^c$ imply $Y^c \in \operatorname{cl}_{\Delta^+} \mathcal{A}$. - (ii) Let $H \in \operatorname{cl}_{\Delta^+} \mathcal{A}$ and $D \in \Delta$ such that $D \subset H^c$. The family $(D^c)^+$ is a Δ^+ -neighborhood of H. There is an $A \in \mathcal{A}$, such that $A \subset D^c$. For the corresponding $U \in \mathcal{U} = \mathcal{A}^C$, $\operatorname{int}_u U = A^c \supset D$ holds, so \mathcal{U} is an interior Δ -cover of $Y = H^c$. In particular, when $\Delta = \mathbf{F}(X)$, (respectively, $\Delta = \mathbf{K}(X)$, $\mathbf{Q}(X)$), then $Y^c \in \operatorname{cl}_{\mathbf{Z}^+} \mathcal{A}$ (resp. $Y^c \in \operatorname{cl}_{\mathbf{F}^+} \mathcal{A}$, $Y^c \in \operatorname{cl}_{\mathbf{V}^+} \mathcal{A}$) for the corresponding interior ω -cover (resp. interior κ -cover, interior ζ -cover) of $Y \in \mathcal{J}$. Let \mathcal{A} and \mathcal{B} be sets whose members are families of subsets of an infinite set X. Then ([8], [3]): - $\mathbf{S}_1(\mathcal{A}, \mathcal{B})$ denotes the selection principle: For each sequence (A_n) of elements of \mathcal{A} there is a sequence (b_n) such that $b_n \in A_n$ for each $n \in \mathbb{N}$ and $\{b_n \mid n \in \mathbb{N}\}$ is an element of \mathcal{B} . - $\mathbf{S}_{fin}(\mathcal{A}, \mathcal{B})$ denotes the selection principle: For each sequence (A_n) of elements of \mathcal{A} there is a sequence (B_n) of finite sets such that $B_n \subset A_n$ for each $n \in \mathbb{N}$ and $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{B}$. Varying the collections \mathcal{A} and \mathcal{B} in the above defined selection principles, characterizations of the space (X, u) and its hyperspaces are defined. When (X, u) is a topological space, all definitions considered in this paper coincide with the corresponding topological ones. Interior covers are replaced with open covers denoted by \mathcal{O} , and \mathcal{H} coincides with $\mathbf{Q}(X)$, the family of all closed subsets of X. We assume that the space (X, u) is not compact. All notions not explained here concerning selection principles can be found in [3], while those concerning Čech closure spaces in [1] and [6]. #### 1. The Rothberger-like selection principles The property $\mathbf{S}_1(\mathcal{O}, \mathcal{O})$ for topological spaces was introduced by F. Rothberger in 1938 and it is called nowadays the Rothberger property. A topological space X has countable strong fan tightness [7] if for each $x \in X$ the selection principle $\mathbf{S}_1(\Phi_x, \Phi_x)$ holds. We generalize these notions to closure spaces in the following way: DEFINITION 1. A space (X, u) has the *Rothberger property* if for every sequence (\mathcal{U}_n) of interior covers of X there is a sequence (U_n) such that $U_n \in \mathcal{U}_n$ for each $n \in \mathbb{N}$ and the collection $\{U_n \mid n \in \mathbb{N}\}$ is an interior cover of X. DEFINITION 2. A space (X, u) has countable strong fan tightness if for every $x \in X$ and each sequence (A_n) of subsets of X such that $x \in \bigcap_{n \in \mathbb{N}} u(A_n)$, there is a sequence $(x_n), x_n \in A_n$, such that $x \in u(\{x_n \mid n \in \mathbb{N}\})$. THEOREM 1. For a space (X, u) and collections Δ and Σ the following are equivalent: - (1) \mathcal{H} satisfies the selection principle $\mathbf{S}_1(\Phi_H^{\Delta^+}, \Phi_H^{\Sigma^+})$ for each $H \in \mathcal{H}$. - (2) Each $Y \in \mathcal{J}$ satisfies $\mathbf{S}_1(\mathcal{I}\Delta, \mathcal{I}\Sigma)$. Proof. (1) \Rightarrow (2): Let (\mathcal{U}_n) be a sequence of interior Δ -covers of Y. Then for the sequence (\mathcal{A}_n) of elements of \mathcal{H} , $\mathcal{A}_n = \{(\operatorname{int}_u U)^c \mid U \in \mathcal{U}_n\} = \{u(U^c) \mid U \in \mathcal{U}_n\}$, $Y^c \in \operatorname{cl}_{\Delta^+} \mathcal{A}_n$ for each $n \in \mathbb{N}$ by Lemma. By assumption, there is a sequence (A_n) such that $A_n \in \mathcal{A}_n$ for every $n \in \mathbb{N}$ and $Y^c \in \operatorname{cl}_{\Sigma^+} \{A_n \mid n \in \mathbb{N}\}$. The corresponding collection $\{U_n \mid n \in \mathbb{N}\}$, $A_n = u(U_n^c)$, is an interior Σ -cover of Y. Indeed, for every $S \in \Sigma$ such that $S \subset Y$, $(S^c)^+$ is a neighborhood of Y^c . There is an A_m such that $A_m \in (S^c)^+$, i.e., $A_m \subset S^c$ implies $S \subset A_m^c = (c \circ u)(U_m^c) = \operatorname{int}_u U_m$. $(2) \Rightarrow (1)$: Let (\mathcal{A}_n) be a sequence of elements of \mathcal{H} such that $H \in \mathcal{H}$ belongs to $\operatorname{cl}_{\Delta^+} \mathcal{A}_n$ for each $n \in \mathbb{N}$. Then by Lemma, the corresponding sequence (\mathcal{U}_n) , $\mathcal{U}_n = \mathcal{A}_n^C$ for $n \in \mathbb{N}$, is a sequence of interior Δ -covers of $H^c = Y$. Since H^c satisfies $\mathbf{S}_1(\mathcal{I}\Delta, \mathcal{I}\Sigma)$, there is a sequence (\mathcal{U}_n) , $\mathcal{U}_n \in \mathcal{U}_n$, such that $\{\mathcal{U}_n \mid n \in \mathbb{N}\}$ is an interior Σ -cover of H^c . By applying Lemma again, $H \in \operatorname{cl}_{\Sigma^+}\{A_n \mid n \in \mathbb{N}\}$ which proves that (1) holds. In particular, when $\Sigma = \Delta$, the next statement is true. THEOREM 2. For a space (X, u) and a collection Δ the following are equivalent: - (1) (\mathcal{H}, Δ^+) has countable strong fan tightness. - (2) Each $Y \in \mathcal{J}$ satisfies $\mathbf{S}_1(\mathcal{I}\Delta, \mathcal{I}\Delta)$. Setting $\Delta = \mathbf{F}(X)$, resp. $\mathbf{K}(X)$, $\mathbf{Q}(X)$, in Theorem 2, we get generalizations of the results for topological spaces. COROLLARY 1. (cf. [2]) For a space (X, u) the following are equivalent: - (1) $(\mathcal{H}, \mathbf{Z}^+)$ has countable strong fan tightness. - (2) Each $Y \in \mathcal{J}$ satisfies $\mathbf{S}_1(\mathcal{I}\Omega, \mathcal{I}\Omega)$. COROLLARY 2. (cf. [2]) For a Hausdorff space (X, u) the following are equivalent: - (1) $(\mathcal{H}, \mathbf{F}^+)$ has countable strong fan tightness. - (2) Each $Y \in \mathcal{J}$ satisfies $\mathbf{S}_1(\mathcal{IK}, \mathcal{IK})$. *Proof.* Note that in a T_2 space (X, u) a compact subset is closed. Thus the family \mathcal{K} of compact subsets is closed for finite unions, contains all singletons and is a subfamily of \mathcal{H} . COROLLARY 3. For a space (X, u) the following are equivalent: - (1) $(\mathcal{H}, \mathbf{V}^+)$ has countable strong fan tightness. - (2) Each $Y \in \mathcal{J}$ satisfies $\mathbf{S}_1(\mathcal{IQ}, \mathcal{IQ})$. Setting in Theorem 1: $\Delta = \mathbf{K}(X)$ and $\Sigma = \mathbf{F}(X)$, (resp. $\Delta = \mathbf{Q}(X)$ and $\Sigma = \mathbf{K}(X)$) we get COROLLARY 4. (cf. [2]) For a T_2 space (X, u) the following are equivalent: - (1) \mathcal{H} satisfies $\mathbf{S}_1(\Phi_H^{\mathbf{F}^+}, \Phi_H^{\mathbf{Z}^+})$ for each $H \in \mathcal{H}$. - (2) Each $Y \in \mathcal{J}$ satisfies $\mathbf{S}_1(\mathcal{IK}, \mathcal{I}\Omega)$. COROLLARY 5. For a T_2 space (X, u) the following are equivalent: - (1) \mathcal{H} satisfies $\mathbf{S}_1(\Phi_H^{\mathbf{V}^+}, \Phi_H^{\mathbf{F}^+})$ for each $H \in \mathcal{H}$. - (2) Each $Y \in \mathcal{J}$ satisfies $\mathbf{S}_1(\mathcal{IQ}, \mathcal{IK})$. We denote by \mathcal{D} the family of dense subsets of a space. When necessary to distinguish between two topologies on the same set we use extra notations; for example: \mathcal{D}_{Δ^+} (resp. \mathcal{D}_{Σ^+}) stands for the family of dense collections in the space (\mathcal{H}, Δ^+) (resp. (\mathcal{H}, Σ^+)). THEOREM 3. For a space (X, u) and collections Δ and Σ the following are equivalent: - (1) \mathcal{H} satisfies $\mathbf{S}_1(\mathcal{D}_{\Delta^+}, \mathcal{D}_{\Sigma^+})$. - (2) (X, u) satisfies $\mathbf{S}_1(\mathcal{I}\Delta, \mathcal{I}\Sigma)$. Proof. (1) \Rightarrow (2): Let (\mathcal{U}_n) be a sequence of interior Δ -covers of X. For each $n \in \mathbb{N}$ the corresponding \mathcal{A}_n is dense in the space (\mathcal{H}, Δ^+) since for every non-empty basic open set $(D^c)^+$ there is an $U_n \in \mathcal{U}_n$ such that $D \subset \operatorname{int}_u(U_n)$. Hence $A_n = u(U_n^c) \subset D^c$ and $A_n \in \mathcal{A}_n \cap (D^c)^+$ implies \mathcal{A}_n is dense in (\mathcal{H}, Δ^+) . By applying (1), there is a sequence (A_n) , $A_n \in \mathcal{A}_n$, such that $\operatorname{cl}_{\Sigma^+}\{A_n \mid n \in \mathbb{N}\} = \mathcal{H}$. For each $n \in \mathbb{N}$ choose $U_n \in \mathcal{U}_n$ such that $u(U_n^c) = A_n$. The collection $\{U_n \mid n \in \mathbb{N}\}$ is an interior Σ -covers of X. Indeed, for every $S \in \Sigma$ there is an $A_m \in (S^c)^+$; hence for the corresponding U_m , $S \subset \operatorname{int}_u(U_m)$ holds. Thus (X, u) satisfies $\mathbf{S}_1(\mathcal{I}\Delta, \mathcal{I}\Sigma)$. $(2) \Rightarrow (1)$: Let (\mathcal{D}_n) be a sequence of dense subsets in (\mathcal{H}, Δ^+) . For each $n \in \mathbb{N}$ the collection $\mathcal{U}_n = \mathcal{D}_n^C$ is an interior Δ -cover of X. It is true since for every $G \in \Delta$ and $D \in (G^c)^+ \cap \mathcal{D}_n$, $D = u(A) \subset G^c$ implies $G \subset \operatorname{int}_u(A^c) = \operatorname{int}_u U$ for the corresponding $U \in \mathcal{U}_n$. By assumption, there is a sequence (U_n) , $U_n \in \mathcal{U}_n$, such that the collection $\{U_n \mid n \in \mathbb{N}\}$ is an interior Σ -cover of X. The collection $\{D_n \mid n \in \mathbb{N}\}$, $D_n = u(U_n^c)$, is dense in (\mathcal{H}, Σ^+) . For every $S \in \Sigma$ there is an $m \in \mathbb{N}$ such that $S \subset \operatorname{int}_u U_m$ implies $D_m \subset S^c$, i.e., $\{D_n \mid n \in \mathbb{N}\} \cap (S^c)^+ \neq \emptyset$. Again, when $\Delta = \mathbf{F}(X)$, (resp. $\mathbf{K}(X)$, $\mathbf{Q}(X)$), or $\Delta = \mathbf{K}(X)$ and $\Sigma = \mathbf{F}(X)$, (resp. $\Delta = \mathbf{Q}(X)$ and $\Sigma = \mathbf{K}(X)$) we get COROLLARY 6. (cf. [2]) For a space (X, u) the following are equivalent: - (1) $(\mathcal{H}, \mathbf{Z}^+)$ satisfies $\mathbf{S}_1(\mathcal{D}, \mathcal{D})$. - (2) (X, u) satisfies $S_1(\mathcal{I}\Omega, \mathcal{I}\Omega)$. COROLLARY 7. (cf. [2]) For a T_2 space (X, u) the following are equivalent: - (1) $(\mathcal{H}, \mathbf{F}^+)$ satisfies $\mathbf{S}_1(\mathcal{D}, \mathcal{D})$. - (2) (X, u) satisfies $\mathbf{S}_1(\mathcal{IK}, \mathcal{IK})$. COROLLARY 8. For a space (X, u) the following are equivalent: - (1) $(\mathcal{H}, \mathbf{V}^+)$ satisfies $\mathbf{S}_1(\mathcal{D}, \mathcal{D})$. - (2) (X, u) satisfies $S_1(\mathcal{IQ}, \mathcal{IQ})$. COROLLARY 9. (cf. [2]) For a T_2 space (X, u) the following are equivalent: - (1) \mathcal{H} satisfies $\mathbf{S}_1(\mathcal{D}_{\mathbf{F}^+}, \mathcal{D}_{\mathbf{Z}^+})$. - (2) (X, u) satisfies $\mathbf{S}_1(\mathcal{IK}, \mathcal{I}\Omega)$. COROLLARY 10. For a T_2 space (X, u) the following are equivalent: - (1) \mathcal{H} satisfies $\mathbf{S}_1(\mathcal{D}_{\mathbf{V}^+}, \mathcal{D}_{\mathbf{F}^+})$. - (2) (X, u) satisfies $S_1(\mathcal{IQ}, \mathcal{IK})$. A family \mathcal{N} of subsets of X is a π -network for a topological space X if every open set in X contains some element of \mathcal{N} . We introduce the following definition. DEFINITION 3. A family $\mathcal{N} = \{N_{\lambda}\}_{{\lambda} \in \Lambda}$ of subsets of a closure space (X,u) is a π -network for (X,u) if every non-empty interior of a subset of X contains some N_{λ} , i.e., for every $A \subset X$ such that $\operatorname{int}_u A \neq \emptyset$, there is $N_{\lambda} \subset \operatorname{int}_u A$. By Π_{Δ} (respectively $\Pi_{\omega}, \Pi_{\kappa}, \Pi_{\zeta}$) we denote the family of π -networks consisting of elements from $\Delta \subset \mathcal{H}$ (resp. $\mathbf{F}(X), \mathbf{K}(X), \mathbf{Q}(X)$). THEOREM 4. For a space (X, u) and collections Δ and Σ the following are equivalent: - (1) \mathcal{H} satisfies $\mathbf{S}_1(\mathcal{O}\Delta^+, \mathcal{O}\Sigma^+)$. - (2) (X, u) satisfies $\mathbf{S}_1(\Pi_{\Delta}, \Pi_{\Sigma})$. Proof. (1) \Rightarrow (2): Let (Δ_n) be a sequence from Π_{Δ} . Then for each $n \in \mathbb{N}$ the collection $\{(D^c)^+ \mid D \in \Delta_n\}$ is a Δ^+ -open cover of \mathcal{H} . Indeed, for a fixed $n \in \mathbb{N}$ and any $H \in \mathcal{H}$, $H^c = \operatorname{int}_u(A^c)$ for some $A \subset X$. There is a $D \in \Delta_n$ such that $D \subset H^c$. Thus $H \in (D^c)^+$. By (1), there is a sequence (D_n) , $D_n \in \Delta_n$, such that the collection $\{(D_n^c)^+ \mid n \in \mathbb{N}\}$ is a Σ^+ -open cover of \mathcal{H} . Then the collection $\{D_n \mid n \in \mathbb{N}\}$ is a $\Sigma - \pi$ -network for (X, u). For, let $A \subset X$ such that $\operatorname{int}_u A \neq \emptyset$. Then for $u(A^c)$ there is a D_n such that $u(A^c) \in (D_n^c)^+$ holds, that is $u(A^c) \subset D_n^c$, i.e., $D_n \subset \operatorname{int}_u A$. $(2) \Rightarrow (1)$: Let (\mathcal{U}_n) be a sequence of Δ^+ -open covers of \mathcal{H} . We may assume that each cover consists of basic open sets, that is $\mathcal{U}_n = \{(D_{n,\lambda}^c)^+ \mid \lambda \in \Lambda\}$. Then for each n the collection $\Delta_n = \{D_{n,\lambda} \mid \lambda \in \Lambda\}$ is a $\Delta - \pi$ -network for (X,u). Indeed, for $A \subset X$ such that $\inf_u A \neq \emptyset$, there is a $D_{n,\lambda}$ such that $u(A^c) \in (D_{n,\lambda}^c)^+$, that is $u(A^c) \subset D_{n,\lambda}^c$, i.e., $D_{n,\lambda} \subset \inf_u A$. Applying (2), there is a sequence (D_n) , $D_n \in \Delta_n$, such that the collection $\{D_n \mid n \in \mathbb{N}\}$ is a $\Sigma - \pi$ -network for (X,u). Then the collection $\{(D_n^c)^+ \mid n \in \mathbb{N}\}$ is a Σ^+ -open cover of \mathcal{H} . By taking $\Sigma = \Delta$ we get THEOREM 5. For a space (X, u) and a collection Δ the following are equivalent: - (1) (\mathcal{H}, Δ^+) has the Rothberger property. - (2) (X, u) satisfies $\mathbf{S}_1(\Pi_{\Delta}, \Pi_{\Delta})$. Again, by specifying the family Δ we get special cases. COROLLARY 11. (cf. [2]) For a space (X, u) the following are equivalent: - (1) $(\mathcal{H}, \mathbf{Z}^+)$ has the Rothberger property. - (2) (X, u) satisfies $\mathbf{S}_1(\Pi_{\omega}, \Pi_{\omega})$. COROLLARY 12. (cf. [2]) For a T_2 space (X, u) the following are equivalent: - (1) $(\mathcal{H}, \mathbf{F}^+)$ has the Rothberger property. - (2) (X, u) satisfies $\mathbf{S}_1(\Pi_{\kappa}, \Pi_{\kappa})$. COROLLARY 13. For a space (X, u) the following are equivalent: - (1) $(\mathcal{H}, \mathbf{V}^+)$ has the Rothberger property. - (2) (X, u) satisfies $\mathbf{S}_1(\Pi_{\zeta}, \Pi_{\zeta})$. We end this section by proving a result concerning Rothberger-type selection principles. In [7, Lemma] a relation between the property $\mathbf{S}_1(\mathcal{O}, \mathcal{O})$ for each finite product of a topological space X and the property $\mathbf{S}_1(\Omega, \Omega)$ for X was given. For closure spaces we prove the next statement. THEOREM 6. If each finite product of (X, u) satisfies $\mathbf{S}_1(\mathcal{I}, \mathcal{I})$, then each finite product of (X, u) has the property $\mathbf{S}_1(\mathcal{I}\Omega, \mathcal{I}\Omega)$. Proof. (i) First we prove that if each finite product of X satisfies $\mathbf{S}_1(\mathcal{I},\mathcal{I})$, then X has the property $\mathbf{S}_1(\mathcal{I}\Omega,\mathcal{I}\Omega)$. Let (\mathcal{U}_n) be a sequence of interior ω -covers of X. Let $\mathbb{N} = \bigcup_{m \in \mathbb{N}} N_m$ be a partition of \mathbb{N} into infinite sets. For each $m \in \mathbb{N}$ and each $k \in N_m$ let $\mathcal{V}_k = \{U^m \mid U \in \mathcal{U}_k\}$. Since for the interior operator in the product space (X^m, v) the equality $\mathrm{int}_v(U^m) = (\mathrm{int}_u U)^m$ holds, (\mathcal{V}_k) for $k \in N_m$, is a sequence of interior covers of X^m as for each $x = (x_1, \ldots, x_m) \in X^m$ and each $k \in N_m$ there is a $U \in \mathcal{U}_k$ such that $\{x_1, \ldots, x_m\} \subset \mathrm{int}_u U$, so that $x \in (\mathrm{int}_u U)^m$. Applying to the sequence $(\mathcal{V}_k), k \in N_m$, the assumption that each finite product of X satisfies $\mathbf{S}_1(\mathcal{I},\mathcal{I})$, there is for each $m \in \mathbb{N}$ a sequence $(V_k), V_k \in \mathcal{V}_k$ for each $k \in N_m$, such that the collection $\{V_k \mid k \in N_m\}$ is an interior cover of X^m . For each $k \in N_m$ let U_k be an element in \mathcal{U}_k with $V_k = U_k^m$. Then the collection $\{U_k \mid k \in N_m, m \in \mathbb{N}\}$ is an interior ω -cover of (X, u) which witnesses for (\mathcal{U}_n) that $\mathbf{S}_1(\mathcal{I}\Omega, \mathcal{I}\Omega)$ holds. Indeed, for every finite set $F = \{x_1, \ldots, x_m\} \subset X$ there is a $V_k = U_k^m \in \mathcal{V}_k$ with $(x_1, \ldots, x_m) \in \operatorname{int}_v U_k^m$, hence $F \subset \operatorname{int}_u U_k$. (ii) Now we show that if X has the property $\mathbf{S}_1(\mathcal{I}\Omega,\mathcal{I}\Omega)$, then all finite powers of X satisfy $\mathbf{S}_1(\mathcal{I}\Omega,\mathcal{I}\Omega)$. Fix m. Let (\mathcal{U}_n) be a sequence of interior ω -covers of X^m . For each $n \in \mathbb{N}$ set $\mathcal{V}_n = \{V \subset X \mid V^m \subset U \text{ for some } U \in \mathcal{U}_n\}$. The collection \mathcal{V}_n is an interior ω -cover of X for each n. Indeed, for every finite set $F = \{x_1, \ldots, x_k\} \subset X$ there is a $U \in \mathcal{U}_n$ such that $F^m \subset \operatorname{int}_v U$. We choose a $V \subset X$ so that $F^m \subset \operatorname{int}_v V^m = (\operatorname{int}_u V)^m \subset V^m \subset U$. The set V satisfies the required condition, that is $F \subset V \in \mathcal{V}_n$. Applying the assumption to the sequence \mathcal{V}_n there exist $V_n \in \mathcal{V}_n$, $n \in \mathbb{N}$, such that the collection $\{V_n \mid n \in \mathbb{N}\}$ is an interior ω -cover of X. For each n we pick $U_n \in \mathcal{U}_n$ so that $V_n^m \subset U_n$. Since the collection $\{V_n^m \mid n \in \mathbb{N}\}$ is an interior ω -cover of X^m , so is $\{U_n \mid n \in \mathbb{N}\}$. ### 2. The Menger-like selection principles In topological spaces the property $\mathbf{S}_{fin}(\mathcal{O}, \mathcal{O})$ is known as the Menger property. A topological space X has countable fan tightness if for each $x \in X$ the selection principle $\mathbf{S}_{fin}(\Phi_x, \Phi_x)$ holds. In closure spaces these definitions read as follows. DEFINITION 4. A space (X, u) has the *Menger property* if for every sequence (\mathcal{U}_n) of interior covers of X there is a sequence (\mathcal{V}_n) of finite collections such that $\mathcal{V}_n \subset \mathcal{U}_n$ for each $n \in \mathbb{N}$ and the collection $\bigcup_{n \in \mathbb{N}} \mathcal{V}_n$ is an interior cover of X. DEFINITION 5. A space (X, u) has countable fan tightness if for every $x \in X$ and for each sequence (A_n) of subsets of X such that $x \in \bigcap_{n \in \mathbb{N}} u(A_n)$, there exist finite sets $B_n \subset A_n$ such that $x \in u(\bigcup_{n \in \mathbb{N}} B_n)$. The proofs of the next theorems are analogous to those in the previous section. The selection principle S_1 is replaced with S_{fin} . THEOREM 7. For a space (X, u) and collections Δ and Σ the following are equivalent: - (1) \mathcal{H} satisfies the selection principle $\mathbf{S}_{fin}(\Phi_H^{\Delta^+}, \Phi_H^{\Sigma^+})$ for each $H \in \mathcal{H}$. - (2) Each $Y \in \mathcal{J}$ satisfies $\mathbf{S}_{fin}(\mathcal{I}\Delta, \mathcal{I}\Sigma)$. THEOREM 8. For a space (X, u) and a collection Δ the following are equivalent: - (1) (\mathcal{H}, Δ^+) has countable fan tightness. - (2) Each $Y \in \mathcal{J}$ satisfies $\mathbf{S}_{fin}(\mathcal{I}\Delta, \mathcal{I}\Delta)$. THEOREM 9. For a space (X, u) and collections Δ and Σ the following are equivalent: - (1) \mathcal{H} satisfies $\mathbf{S}_{fin}(\mathcal{D}_{\Delta^+}, \mathcal{D}_{\Sigma^+})$. - (2) (X, u) satisfies $\mathbf{S}_{fin}(\mathcal{I}\Delta, \mathcal{I}\Sigma)$. THEOREM 10. For a space (X, u) and collections Δ and Σ the following are equivalent: - (1) \mathcal{H} satisfies $\mathbf{S}_{fin}(\mathcal{O}\Delta^+, \mathcal{O}\Sigma^+)$. - (2) (X, u) satisfies $\mathbf{S}_{fin}(\Pi_{\Delta}, \Pi_{\Sigma})$. In particular, when specifying Δ and Σ the statements corresponding to Corollaries 1-10 are obtained. By replacing the principle S_1 with S_{fin} in Theorem 6, we get by a similar proof THEOREM 11. If each finite product of (X, u) satisfies $\mathbf{S}_{fin}(\mathcal{I}, \mathcal{I})$, then each finite product of (X, u) has the property $\mathbf{S}_{fin}(\mathcal{I}\Omega, \mathcal{I}\Omega)$. ### 3. Set-tightness Recall that the set-tightness t_s of a space X is countable if for each $A \subset X$ and each $x \in \overline{A}$ there is a sequence (A_n) of subsets of A such that $x \in \overline{\cup \{A_n \mid n \in \mathbb{N}\}}$ but $x \notin \overline{A_n}$ for each $n \in \mathbb{N}$. THEOREM 12. For a space (X, u) and a collection Δ the following are equivalent: - (1) (\mathcal{H}, Δ^+) has countable set-tightness. - (2) For each $Y \in \mathcal{J}$ and each interior Δ -cover \mathcal{U} of Y there is a countable collection $\{\mathcal{U}_n \mid n \in \mathbb{N}\}$ of subsets of \mathcal{U} such that no \mathcal{U}_n is an interior Δ -cover of Y and $\bigcup_{n \in \mathbb{N}} \mathcal{U}_n$ is an interior Δ -cover of Y. Proof. Follows from definitions and Lemma. In particular, setting $\Delta = \mathbf{F}(X)$ (resp. $\mathbf{K}(X)$, $\mathbf{Q}(X)$), we get COROLLARY 14. (cf. [2]) For a space (X, u) the following are equivalent: - (1) $(\mathcal{H}, \mathbf{Z}^+)$ has countable set-tightness. - (2) For each $Y \in \mathcal{J}$ and each interior ω -cover \mathcal{U} of Y there is a countable collection $\{\mathcal{U}_n \mid n \in \mathbb{N}\}$ of subsets of \mathcal{U} such that no \mathcal{U}_n is an interior ω -cover of Y and $\bigcup_{n \in \mathbb{N}} \mathcal{U}_n$ is an interior ω -cover of Y. COROLLARY 15. (cf. [2]) For a T_2 space (X, u) the following are equivalent: - (1) $(\mathcal{H}, \mathbf{F}^+)$ has countable set-tightness. - (2) For each $Y \in \mathcal{J}$ and each interior κ -cover \mathcal{U} of Y there is a countable collection $\{\mathcal{U}_n \mid n \in \mathbb{N}\}$ of subsets of \mathcal{U} such that no \mathcal{U}_n is an interior κ -cover of Y and $\bigcup_{n \in \mathbb{N}} \mathcal{U}_n$ is an interior κ -cover of Y. COROLLARY 16. For a space (X, u) the following are equivalent: - (1) $(\mathcal{H}, \mathbf{V}^+)$ has countable set-tightness. - (2) For each $Y \in \mathcal{J}$ and each interior ζ -cover \mathcal{U} of Y there is a countable collection $\{\mathcal{U}_n \mid n \in \mathbb{N}\}$ of subsets of \mathcal{U} such that no \mathcal{U}_n is an interior ζ -cover of Y and $\bigcup_{n \in \mathbb{N}} \mathcal{U}_n$ is an interior ζ -cover of Y. ## 4. The Pytkeev property A topological space X has the Pytkeev property if for every $A \subset X$ and each $x \in \overline{A \setminus \{x\}}$ there is a countable collection $\{A_n \mid n \in \mathbb{I}\mathbb{N}\}$ of countable infinite subsets of A which is a π -network at x, i.e., each neighborhood of x contains some A_n . Let τ and σ be two topologies on a set X. Then X has the $(\tau, \sigma)-Pytkeev\ property$ if for every $A\subset X$ and each $x\in \operatorname{cl}_{\tau}(A\setminus\{x\})$ there is a countable collection $\{A_n\mid n\in\mathbb{N}\}$ of countable infinite subsets of A which is a π -network at x with respect to the σ topology. In the next theorem we suppose that for every interior Δ -cover \mathcal{U} of $Y, Y\neq \operatorname{int}_u U$ for each $U\in \mathcal{U}$ holds. THEOREM 13. For a space (X, u) and collections Δ and Σ the following are equivalent: - (1) \mathcal{H} has the (Δ^+, Σ^+) -Pytkeev property. - (2) For each $Y \in \mathcal{J}$ and each interior Δ -cover \mathcal{U} of Y there is a sequence (\mathcal{U}_n) of infinite subsets of \mathcal{U} such that $\{\cap \operatorname{int}_u \mathcal{U}_n \mid n \in \mathbb{N}\}$ is a (not necessarily interior) Σ -cover of Y. $[\cap \operatorname{int}_u \mathcal{U}_n = \cap \{\operatorname{int}_u \mathcal{U} \mid U \in \mathcal{U}_n\}]$ *Proof.* As in [4, Theorem 8] by using Lemma. $$\Box$$ In particular, setting $\Delta = \Sigma = \mathbf{F}(X)$ (resp. $\Delta = \Sigma = \mathbf{K}(X)$, $\mathbf{Q}(X)$), we get COROLLARY 17. (cf. [4]) For a space (X, u) the following are equivalent: - (1) $(\mathcal{H}, \mathbf{Z}^+)$ has the Pytkeev property. - (2) For each $Y \in \mathcal{J}$ and each interior ω -cover \mathcal{U} of Y there is a sequence (\mathcal{U}_n) of countable infinite subsets of \mathcal{U} such that $\{\cap \operatorname{int}_u \mathcal{U}_n \mid n \in \mathbb{N}\}$ is a (not necessarily interior) ω -cover of Y. COROLLARY 18. (cf. [4]) For a T_2 space (X, u) the following are equivalent: - (1) $(\mathcal{H}, \mathbf{F}^+)$ has the Pytkeev property. - (2) For each $Y \in \mathcal{J}$ and each interior κ -cover \mathcal{U} of Y there is a sequence (\mathcal{U}_n) of countable infinite subsets of \mathcal{U} such that $\{\cap \operatorname{int}_u \mathcal{U}_n \mid n \in \mathbb{N}\}$ is a (not necessarily interior) κ -cover of Y. COROLLARY 19. For a space (X, u) the following are equivalent: - (1) $(\mathcal{H}, \mathbf{V}^+)$ has the Pytkeev property. - (2) For each $Y \in \mathcal{J}$ and each interior ζ -cover \mathcal{U} of Y there is a sequence (\mathcal{U}_n) of countable infinite subsets of \mathcal{U} such that $\{\cap \operatorname{int}_u \mathcal{U}_n \mid n \in \mathbb{N}\}$ is a (not necessarily interior) ζ -cover of Y. ### 5. The Hurewicz-like selection principles The notion of groupability was introduced in [5]. A countable interior C-cover U of a space (X, u) is groupable if there is a partition $U = \bigcup_{n \in \mathbb{N}} \mathcal{U}_n$ into finite sets such that for each $C \in C$ and for all but finitely many n there is a $U \in \mathcal{U}_n$ such that $C \subset \operatorname{int}_u U$ holds. Let $\mathcal{I}C^{gp}$ denote the family of groupable interior C-covers of the space. A countable set $A \in \Phi_x$ is *groupable* if there is a partition $A = \bigcup_{n \in \mathbb{N}} A_n$ into finite sets such that each neighborhood of x has non-empty intersection with all but finitely many A_n . Recall that a space X has the Reznichenko property [= is weakly Fréchet-Urysohn] if for every $A \subset X$ and each $x \in \overline{A} \setminus A$ there is a countable infinite family A of finite pairwise disjoint subsets of A such that each neighborhood of x meets all but finitely many elements of A. THEOREM 14. For a space (X, u) and a collection Δ the following are equivalent: - (1) (\mathcal{H}, Δ^+) has the Reznichenko property. - (2) For each $Y \in \mathcal{J}$ and each interior Δ -cover \mathcal{U} of Y, there is a sequence (\mathcal{U}_n) of finite pairwise disjoint subsets of \mathcal{U} such that each $D \in \Delta$ belongs to $\operatorname{int}_u \mathcal{U}_n$ for some $\mathcal{U}_n \in \mathcal{U}_n$ for all but finitely many n. - Proof. (1) \Rightarrow (2): Let $Y \in \mathcal{J}$ and \mathcal{U} be an interior Δ -cover of Y. By Lemma, $Y^c \in \operatorname{cl}_{\Delta^+} \mathcal{A}$ where $\mathcal{A} = \{u(U^c) \mid U \in \mathcal{U}\}$. By assumption, there is a sequence (\mathcal{A}_n) of finite pairwise disjoint subsets of \mathcal{A} such that each Δ^+ -neighborhood of Y^c intersects \mathcal{A}_n for all but finitely many n. The sequence (\mathcal{U}_n) defined by $\mathcal{U}_n = \mathcal{A}_n^C$ satisfies the required conditions. Indeed, \mathcal{U}_n are finite, pairwise disjoint and for $D \in \Delta$ such that $D \subset Y$, the collection $(D^c)^+$ is a Δ^+ -neighborhood of Y^c . There is n_0 such that $(D^c)^+ \cap \mathcal{A}_n \neq \emptyset$ for each $n > n_0$. Hence, for every $n > n_0$ there is a set $A_n \in \mathcal{A}_n$ such that $A_n \subset D^c$, that is $D \subset A_n^c = \operatorname{int}_u \mathcal{U}_n$ and $\mathcal{U}_n \in \mathcal{U}_n$ holds. - $(2) \Rightarrow (1)$: Let $\mathcal{A} \subset \mathcal{H}$ and $H \in \mathcal{H}$ so that $H \in \operatorname{cl}_{\Delta^+} \mathcal{A} \setminus \mathcal{A}$. Then $\mathcal{U} = \mathcal{A}^C$ is an interior Δ -cover of $H^c = Y$. Applying (2) to Y and \mathcal{U} , there is a sequence (\mathcal{U}_n) of finite pairwise disjoint subsets of \mathcal{U} such that for each $D \subset Y$, $D \in \Delta$, for all but finitely many n there is a $U_n \in \mathcal{U}_n$ such that $D \subset \operatorname{int}_u \mathcal{U}_n$. For each n we set $\mathcal{G}_n = \{u(\mathcal{U}^c) \mid \mathcal{U} \in \mathcal{U}_n\}$. The collection $\{\mathcal{G}_n \mid n \in \mathbb{N}\}$ satisfies (1). By combining Theorem 14 with Theorems 2 and 8 we get the following statements. THEOREM 15. For a space (X, u) and a collection Δ the following are equivalent: - (1) (\mathcal{H}, Δ^+) has the Reznichenko property and countable strong fan tightness. - (2) Each $Y \in \mathcal{J}$ satisfies $\mathbf{S}_1(\mathcal{I}\Delta, \mathcal{I}\Delta^{gp})$. THEOREM 16. For a space (X, u) and a collection Δ the following are equivalent: - (1) (\mathcal{H}, Δ^+) has the Reznichenko property and countable fan tightness. - (2) Each $Y \in \mathcal{J}$ satisfies $\mathbf{S}_{fin}(\mathcal{I}\Delta, \mathcal{I}\Delta^{gp})$. In particular, setting $\Delta = \mathbf{F}(X)$ (resp. $\Delta = \mathbf{K}(X)$, $\mathbf{Q}(X)$), we get COROLLARY 20. (cf. [4]) For a space (X, u) the following are equivalent: - (1) $(\mathcal{H}, \mathbf{Z}^+)$ has the Reznichenko property and countable strong fan tightness. - (2) Each $Y \in \mathcal{J}$ satisfies $\mathbf{S}_1(\mathcal{I}\Omega, \mathcal{I}\Omega^{gp})$. COROLLARY 21. (cf. [4]) For a space (X, u) the following are equivalent: - (1) $(\mathcal{H}, \mathbf{Z}^+)$ has the Reznichenko property and countable fan tightness. - (2) Each $Y \in \mathcal{J}$ satisfies $\mathbf{S}_{fin}(\mathcal{I}\Omega, \mathcal{I}\Omega^{gp})$. COROLLARY 22. (cf. [4]) For a T_2 space (X, u) the following are equivalent: - (1) $(\mathcal{H}, \mathbf{F}^+)$ has the Reznichenko property and countable strong fan tightness. - (2) Each $Y \in \mathcal{J}$ satisfies $\mathbf{S}_1(\mathcal{IK}, \mathcal{IK}^{gp})$. COROLLARY 23. (cf. [4]) For a T_2 space (X, u) the following are equivalent: - (1) $(\mathcal{H}, \mathbf{F}^+)$ has the Reznichenko property and countable fan tightness. - (2) Each $Y \in \mathcal{J}$ satisfies $\mathbf{S}_{fin}(\mathcal{IK}, \mathcal{IK}^{gp})$. COROLLARY 24. For a space (X, u) the following are equivalent: - (1) $(\mathcal{H}, \mathbf{V}^+)$ has the Reznichenko property and countable strong fan tightness. - (2) Each $Y \in \mathcal{J}$ satisfies $\mathbf{S}_1(\mathcal{IQ}, \mathcal{IQ}^{gp})$. COROLLARY 25. For a space (X, u) the following are equivalent: - (1) $(\mathcal{H}, \mathbf{V}^+)$ has the Reznichenko property and countable fan tightness. - (2) Each $Y \in \mathcal{J}$ satisfies $\mathbf{S}_{fin}(\mathcal{IQ}, \mathcal{IQ}^{gp})$. Using appropriate modifications in the proof of Theorem 6 we get the statement which includes groupability. THEOREM 17. If each finite product of (X, u) satisfies $\mathbf{S}_1(\mathcal{I}, \mathcal{I}^{gp})$, then each finite product of (X, u) has the property $\mathbf{S}_1(\mathcal{I}\Omega, \mathcal{I}\Omega^{gp})$. Proof. (i) First we prove that if each finite product of X satisfies $S_1(\mathcal{I}, \mathcal{I}^{gp})$, then X has the property $S_1(\mathcal{I}\Omega, \mathcal{I}\Omega^{gp})$. Following the proof of Theorem 6 and applying the assumption to the sequence (\mathcal{V}_k) , $k \in \mathcal{N}_m$, there is for each $m \in \mathbb{N}$ a sequence (V_k) , $V_k \in \mathcal{V}_k$ for each $k \in \mathcal{N}_m$, such that the collection $\mathcal{W}_m = \{V_k \mid k \in \mathcal{N}_m\}$ is a groupable interior cover of X^m . There is a partition $\mathcal{W}_m = \cup_{\nu \in \mathbb{N}} \mathcal{W}_{m\nu}$ into finite sets such that for each $x \in X^m$ and for all but finitely many ν there is a $V \in \mathcal{W}_{m\nu}$ such that $x \in \text{int}_v V$ in the product space (X^m, v) holds. Each $\mathcal{W}_{m\nu} = \{V_{k_1(\nu)}, \dots, V_{k_s(\nu)}\}$ for some $k_1(\nu), \dots, k_s(\nu) \in \mathcal{N}_m$. For each $k \in \mathcal{N}_m$ let U_k be an element in \mathcal{U}_k with $V_k = U_k^m$ and $\mathcal{Y}_{m\nu} = \{U_{k_1(\nu)}, \dots, U_{k_s(\nu)}\}$. The collection $\{\mathcal{Y}_\mu \mid \mu \in \mathbb{N}\}$ where $\mathcal{Y}_\mu = \cup \{\mathcal{Y}_{m\nu} \mid \mu = m + \nu - 1; m, \nu \in \mathbb{N}\}$ witnesses the groupability of the interior ω-cover $\mathcal{Y} = \cup_{\mu \in \mathbb{N}} \mathcal{Y}_\mu = \{U_k \mid k \in \mathcal{N}_m, m \in \mathbb{N}\}$ of (X, u). Indeed, for every finite subset $F = \{x_1, \ldots, x_m\} \subset X$ there is a ν_0 such that for all $\nu \in \mathbb{N}$, $\nu \geq \nu_0$ implies there is an $m \in \mathbb{N}$ and a $V \in \mathcal{W}_{m\nu}$ such that $x = (x_1, \ldots, x_m) \in \operatorname{int}_v V$ holds. Hence, there is a $\mu_0 = m + \nu_0$ such that for all $\mu \in \mathbb{N}$, $\mu \geq \mu_0$ implies there is a $U \in \mathcal{Y}_{\mu}$ such that $F \subset \operatorname{int}_u U$. (ii) Now we show that if X has the property $S_1(\mathcal{I}\Omega, \mathcal{I}\Omega^{gp})$, then all finite powers of X satisfy $S_1(\mathcal{I}\Omega, \mathcal{I}\Omega^{gp})$. As in Theorem 6, fix m. Given a sequence (\mathcal{U}_n) of interior ω -covers of X^m consider a sequence (\mathcal{V}_n) of interior ω -covers of X where $\mathcal{V}_n = \{V \subset X \mid V^m \subset U \text{ for some } U \in \mathcal{U}_n\}$. By the assumption there exist $V_n \in \mathcal{V}_n$, $n \in \mathbb{N}$, such that the collection $\mathcal{W} = \{V_n \mid n \in \mathbb{N}\}$ is a groupable interior ω -cover of X. For each n we pick $U_n \in \mathcal{U}_n$ so that $V_n^m \subset U_n$. Since the collection $\{V_n^m \mid n \in \mathbb{N}\}$ is a groupable interior ω -cover of X^m , so is $\{U_n \mid n \in \mathbb{N}\}$. In a similar way we prove THEOREM 18. If each finite product of (X, u) satisfies $\mathbf{S}_{fin}(\mathcal{I}, \mathcal{I}^{gp})$, then each finite product of (X, u) has the property $\mathbf{S}_{fin}(\mathcal{I}\Omega, \mathcal{I}\Omega^{gp})$. We conclude this paper with the next statements. THEOREM 19. (see [4]) For a space (X, u) and collections Δ and Σ the following are equivalent: - (1) \mathcal{H} satisfies $\mathbf{S}_1(\Phi_H^{\Delta^+}, (\Phi_H^{\Sigma^+})^{gp})$ for each $H \in \mathcal{H}$. (2) Each $Y \in \mathcal{J}$ satisfies $\mathbf{S}_1(\mathcal{I}\Delta, \mathcal{I}\Sigma^{gp})$. *Proof.* The constructions are analogous to those in the previous theorems. By replacing the selection principle S_1 with S_{fin} we get THEOREM 20. (see [4]) For a space (X, u) and collections Δ and Σ the following are equivalent: - (1) \mathcal{H} satisfies $\mathbf{S}_{fin}(\Phi_H^{\Delta^+}, (\Phi_H^{\Sigma^+})^{gp})$ for each $H \in \mathcal{H}$. (2) Each $Y \in \mathcal{J}$ satisfies $\mathbf{S}_{fin}(\mathcal{I}\Delta, \mathcal{I}\Sigma^{gp})$. ACKNOWLEDGMENT. The authors thank the referee for valuable suggestions and comments. #### References - [1] E. Čech, Topological Spaces, Publishing House of the Czechoslovak Academy of Science, Prague; Interscience Publishers John Wiley & Sons, London-New York-Sydney, 1966. - [2] G. Di Maio, Lj. D. R. Kočinac, and E. Meccariello, Selection principles and hyperspace topologies, Topology Appl. 153 (2005), no. 5-6, 912-923. - [3] Lj. D. R. Kočinac, Selected results on selection principles, Proceedings of the 3rd Seminar on Geometry and Topology, July 15-17, 2004, Tabriz, Iran (Sh. Rezapour, ed.), 71-104. - [4] _____, The Reznichenko property and the Pytkeev property of hyperspaces, Acta Math. Hungar. 107 (2005), no. 3, 225–233. - [5] Lj. D. R. Kočinac and M. Scheepers, Combinatorics of open covers (VII): Groupability, Fund. Math. 179 (2003), no. 2, 131–155. - [6] M. Mršević, Proper and admissible topologies in closure spaces, Indian J. Pure Appl. Math. **36** (2005), no. 11, 613–627. - [7] M. Sakai, Property C" and function spaces, Proc. Amer. Math. Soc. 104 (1988), no. 3, 917-919. - [8] M. Scheepers, Combinatorics of open covers I: Ramsey theory, Topology Appl. 69 (1996), no. 1, 31–62. Mila Mršević Faculty of Mathematics University of Belgrade Studentski trg 16, 11000 Beograd, SCG E-mail: mrsevic@matf.bg.ac.yu Milena Jelić Poljoprivredni fakultet University of Belgrade Nemanjina 6, 11081 Beograd–Zemun, SCG *E-mail*: milena@agrifaculty.bg.ac.yu