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SELECTION PRINCIPLES AND HYPERSPACE
TOPOLOGIES IN CLOSURE SPACES

MiLa MRSEVIE* AND MILENA JELIC

ABSTRACT. Relations between closure-type properties of hyperspa-
ces over a Cech closure space (X,u)and covering properties of
(X, u) are investigated.

Introduction

1. An operator u : P(X) — P(X) defined on the power set P(X)
of a set X satisfying the axioms:
(C1) u(d) =0,
(C2) AcCu(A)for every AC X,
(C3) u(AUB)=u(A)Uu(B) forall A,BC X,
is called a Cech closure operator and the pair (X,u) isa Cech closure
space. For short, (X,w)will be noted by X as well, and called a closure
space or a space.

A subset A is closed in (X,u) if u(A) = A holds. It is open if its
complement is closed.

The interior operator int, : P(X) — P(X) is defined by means of
the closure operator in the usual way: int, = couoc, where ¢: P(X) —
P(X) is the complement operator. A subset U is a neighborhood of a
point z in X if z € int, U holds.

A closure space (X,u)is Ty if for each two distinct points in X the
following holds: ({z} Nu({y})) U ({y} Nu({z})) = 0 whenever = # y. It
is equivalent to: every one-point subset of X is closed in (X, u).
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A space (X,u)is Ty (Hausdorff) if each two distinct points in X
have disjoint neighborhoods.

All considered spaces are T}.

2. A collection {Gy} is an interior cover of a set A in (X, u)if the
collection {int,G,} covers A. We suppose that the interior of every
element of an interior cover is non-empty and that each cover is non-
trivial, i.e., that the set X does not belong to the cover.

A subset A in a space (X,u)is compact if every interior cover of A
has a finite subcover.

Let C be a collection of subsets of X. An interior cover U is a
C-cover of X if for every C € C\ {X} there is a U € U such that
C C int,U holds.

The collection of all interior covers U of (X, u)will be denoted by Z
and of all interior C-covers by ZC.

The following notations are used:

H={u(A)|AC X}, J=H={int,(A)|ACX},

o, ={AC X |zecu(Ad)\ A},

F(X) the family of all finite subsets of X,

K(X) the family of all compact subsets of X,

Q(X) the family of all closed subsets of X.

F(X)-, K(X)- and Q(X)-interior covers will be called w- , k- and
(-covers of X, respectively. Z€2 stands for the collection of all w-covers
of X, ZK for the collection of all k-covers, and ZQ for the collection
of all (-covers.

For A C X the usual notation is A* = {H € H | H C A}.

To the end A and ¥ are subcollections of H closed for finite unions
and containing all singletons. The upper A-topology for H, denoted by
AT, has for a base the collection {(D®)* | D € A}U{H}.

Following [4], the F(X)T-topology will be denoted by Z* and the
K(X)™-topology, the upper Fell topology (or the co-compact topology),
by F*. Also, VT will stand for the Q(X)™-topology, the upper Vietoris
topology.

Let A be a subcollection of H. Each A € A is of the form A = u(B).
We pick one such B = B(A). The collection U = {B(A)°} will be
denoted by A€.

The following is our key lemma and the constructions and notations
introduced in it are used throughout the paper.
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LEMMA. (i) Let (X,u)be a space, a subset Y € J, and U be an
interior A-cover of Y. Set A = {(int,U)¢ | U € U} = {u(U®) | U € U}.
Then A C 'H holds and Y° € clpy+A.

(ii)) Conversely, having a collection A C ‘H and a set H € H such
that H € cla+.A, the collection U = A® is an interior A-cover of H®.

Proof. (i) Let U be an interior A-cover of Y and (D°)T be a basic
AT-neighborhood of Y°. Since D C Y, there is a U € U such that
D C int,U holds. Then A = (int,U)°* € A and A C D¢ imply
Y¢e C1A+ A.

(ii) Let H € cla+.A and D € A such that D C H®. The family
(DY)t is a AT-neighborhood of H. There is an A € A, such that
A C D¢, For the corresponding U € U = A, int, U = A° D D holds,
so U1is an interior A-cover of Y = HC. U

In particular, when A = F(X), (respectively, A = K(X), Q(X)),
then Y° € clz+ A (resp. Y° € clp+A, Y° € cly+.A) for the correspond-
ing interior w-cover (resp. interior s-cover, interior (-cover) of Y € J.

Let A and B be sets whose members are families of subsets of an
infinite set X. Then ([8], [3]):

S1(A, B) denotes the selection principle: For each sequence (Ay) of
elements of A there is a sequence (b,) such that b, € A, for each
n €N and {b, |n € IN} is an element of B.

Sfin(A, B) denotes the selection principle: For each sequence (Ay) of
elements of A there is a sequence (B,,) of finite sets such that B, C A4,
for each n € IN and UpewB, € B.

Varying the collections A and B in the above defined selection prin-
ciples, characterizations of the space (X,u) and its hyperspaces are
defined. When (X,u) is a topological space, all definitions considered
in this paper coincide with the corresponding topological ones. Interior
covers are replaced with open covers denoted by O, and H coincides
with Q(X), the family of all closed subsets of X.

We assume that the space (X, u)is not compact.

All notions not explained here concerning selection principles can be
found in [3], while those concerning Cech closure spaces in [1] and [6].

1. The Rothberger-like selection principles

The property S;(Q,0) for topological spaces was introduced by F.
Rothberger in 1938 and it is called nowadays the Rothberger property.
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A topological space X has countable strong fan tightness [7] if for each
x € X the selection principle S;(®,, ®,) holds.
We generalize these notions to closure spaces in the following way:

DEFINITION 1. A space (X,u)has the Rothberger property if for every
sequence (Up) of interior covers of X there is a sequence (U,) such
that U, € U, for each n € IN and the collection {U, | n € IN} is an
interior cover of X.

DEFINITION 2. A space (X,u)has countable strong fan tightness
if for every z € X and each sequence (A4,) of subsets of X such
that =z € Npewu(4y), there is a sequence (z,), z, € A,, such that
z € u({z, | n € IN}).

THEOREM 1. For a space (X,u)and collections A and ¥ the fol-
lowing are equivalent:

(1) H satisfies the selection principle Sl(@%Jr, <I>§I+) foreach H € H.

(2) Each Y € J satisfies S1(ZA,ZY).

Proof. (1)=(2): Let (U4,) be a sequence of interior A-covers of
Y. Then for the sequence (A4,) of elements of H, A, = {(int,U)° |
Uel} ={ulU | U e U}, Y € clp+ A, for each n € IN by
Lemma. By assumption, there is a sequence (A4,) such that A, € A,
for every n € IN and Y° € clg+{A4, | n € IN}. The corresponding
collection {U, | n € IN}, A, = u(Ug), is an interior X-cover of Y.
Indeed, for every S € ¥ such that S C Y, (S°)T is a neighborhood
of Y°. There is an A,, such that A,, € ()7, i.e,, 4, C S¢ implies
S C AS, = (cou)(Us) = int,Up,.

(2)=(1): Let (Ay) be asequence of elements of H such that H € H
belongs to clp+.4, for each n € IN. Then by Lemma, the corresponding
sequence (Uy,), U, = AS for n € IN, is a sequence of interior A-
covers of H® =Y. Since H® satisfies S1(ZA,ZZX), there is a sequence
(Un), Un € Uy, such that {U, | n € IN} is an interior X-cover of HC.
By applying Lemma again, H € clg+{A, | n € IN} which proves that
(1) holds. O

In particular, when ¥ = A, the next statement is true.

THEOREM 2. For a space (X, u)and a collection A the following are
equivalent:

(1) (H,A™) has countable strong fan tightness.

(2) BEach Y € J satisfies S1(ZA,ZA).

Setting A = F(X), resp. K(X), Q(X), in Theorem 2, we get gen-
eralizations of the results for topological spaces.
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COROLLARY 1. (cf. [2]) For a space (X,u) the following are equiva-
lent:

(1) (H,Z") has countable strong fan tightness.

(2) Each Y € J satisfies S1(ZI,7Q).

COROLLARY 2. (cf. [2]) For a Hausdorff space (X,u) the following
are equivalent:

(1) (H,FT) has countable strong fan tightness.

(2) BEach Y € J satisfies $1(ZK,ZK).

Proof. Note that in a Ty space (X, u)a compact subset is closed.
Thus the family K of compact subsets is closed for finite unions, contains
all singletons and is a subfamily of H. O

COROLLARY 3. For a space (X, u) the following are equivalent:
(1) (H,VT) has countable strong fan tightness.
(2) Each Y € J satisfies $1(79Q,79Q).

Setting in Theorem 1: A = K(X) and ¥ = F(X), (resp. A =Q(X)
and ¥ = K(X)) we get

COROLLARY 4. (cf. [2]) For a Ty space (X,u)the following are
equivalent:

(1) H satisfies Sl(fbf;r,‘l)%;) for each H € H.

(2) Each Y € J satisfies S1(ZK,ZQ).

COROLLARY 5. For a T space (X, u) the following are equivalent:
(1) H satisfies Sl(@z+,<I>EI+) for each H € 'H.
(2) Each Y € J satisfies $1(ZQ,ZK).

We denote by D the family of dense subsets of a space. When neces-
sary to distinguish between two topologies on the same set we use extra
notations; for example: Da+ (resp. Dx+ ) stands for the family of dense
collections in the space (H,A™) (resp. (H,Z1)).

THEOREM 3. For a space (X,u)and collections A and ¥ the fol-
lowing are equivalent:

(1) ‘H satisfies Sl(DA+,D2+).

(2) (X, u)satisfies S1(ZA,ZX).

Proof. (1)=(2): Let (Un) be a sequence of interior A-covers of X.
For each n € IN the corresponding A4, is dense in the space (H,A™)
since for every non-empty basic open set (D)t there is an U, € U,
such that D C int,(U,). Hence A, = w(US) C D° and A, € A, N
(D)* implies A, is dense in (H,AT). By applying (1), there is a
sequence (Ay), Ap, € Ay, such that cly+{A4, | n € IN} = H. For
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each n € IN choose U, € U, such that u(US) = A,. The collection
{Un | n € IN} is an interior Y-covers of X. Indeed, for every S € &
there is an A, € (S°)7T ; hence for the corresponding Uy, S C int,(Up,)
holds. Thus (X, u)satisfies S;(ZA,ZY).

(2)= (1): Let (D) be a sequence of dense subsets in (H,A"). For
each n € IN the collection U, = DS is an interior A-cover of X. It
is true since for every G € A and D € (G°)* N D,, D = u(4) C G°
implies G C inty(A®) = int, U for the corresponding U € U,. By
assumption, there is a sequence (Uy), U,, € Uy, such that the collection
{Un | n € IN} is an interior Y-cover of X. The collection {D,, | n €
IN}, D, = u(Ug), is dense in (H,EX*). For every S € ¥ there is an
m € IN such that S C int,U,, implies D,, C S°, ie., {D, | n €
IN} N (S)T £ 0. O

Again, when A =F(X), (resp. K(X), Q(X)), or A =K(X) and
Y =F(X), (resp. A=Q(X) and ¥ = K(X)) we get

COROLLARY 6. (cf. [2]) For a space (X, u) the following are equiva-
lent:

(1) (H,Z*) satisfles S1(D, D).

(2) (X,u)satisfies 8;(I,IQ).

COROLLARY 7. (cf. [2]) For a Ty space (X,u)the following are
equivalent:

(1) (H,F™*) satisfies S1(D, D).

(2) (X,u)satisfies S;(ZK,ZK).

COROLLARY 8. For a space (X,u) the following are equivalent:
(1) (H,VT) satisfies S1(D, D).
(2) (X,u)satisfies S1(Z7Q,ZQ).

COROLLARY 9. (cf. [2]) For a Ty space (X,u)the following are
equivalent:

(1) H satisfies S1(Dg+,Dg+).

(2) (X,u)satisfies S1(ZTK,IQ).

COROLLARY 10. For a T space (X, u) the following are equivalent:
(1) H satisfies S1(Dvy+,Dp+).
(2) (X,u)satisfies S;(ZQ,ZIK).

A family N of subsets of X is a m-network for a topological space
X if every open set in X contains some element of N.
We introduce the following definition.
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DEFINITION 3. A family N = {N)},ca of subsets of a closure space
(X,u)is a m-network for (X,u)if every non-empty interior of a subset
of X contains some Ny, i.e., for every A C X such that int,A # 0,
there is Ny C int,A.

By Ila ( respectively IL,, 1., II;) we denote the family of r-networks
consisting of elements from A CH (resp. F(X), K(X), Q(X)).

THEOREM 4. For a space (X, u)and collections A and ¥ the fol-
lowing are equivalent:

(1) H satisfies S1(OAT, OXT).

(2) (X, u)satisfies S1(Ila,IIx).

Proof. (1)=(2): Let (Ay) be a sequence from IIa. Then for each
n € IN the collection {(D°)* | D € A,} is a AT-open cover of H.
Indeed, for a fixed » € IN and any H € H, H® = int,(A®) for some
A C X. Thereis a D € A, such that D ¢ H¢. Thus H € (D%)*.
By (1), there is a sequence (D), D, € A,, such that the collection
{(Dg)* | n € N} is a S+-open cover of H. Then the collection {D,, |
n € IN} is a ¥ — m-network for (X,u). For, let A C X such that
inty,A # 0. Then for u(A°) there is a D,, such that u(A°) € (D)t
holds, that is u(A€) C Dg, i.e., D, C int,A.

(2)=(1): Let (Up) be a sequence of At-open covers of H. We
may assume that each cover consists of basic open sets, that is U, =
{(D, )" | X € A}. Then for each n the collection A, = {D,» | A € A}
is a A—m-network for (X, u). Indeed, for A C X such that int, A # 0,
there is a Dy 5 such that u(A) € (Dy )7, that is u(A°) C Dj, ,, ie.,
D, » Cint,A. Applying (2), there is a sequence (D,,), D, € A, such
that the collection {D, | n € IN} is a ¥ — m-network for (X,u). Then
the collection {(DS)* |n € IN} is a X T-open cover of H. O

By taking X = A we get

THEOREM 5. For a space (X, u)and a collection A the following are
equivalent;

(1) (H,A™) has the Rothberger property.

(2) (X,u)satisfies S1(I1a,IIA).

Again, by specifying the family A we get special cases.

COROLLARY 11. (cf. [2]) For a space (X,u) the following are equiv-
alent :

(1) (H, Z*) has the Rothberger property.

(2) (X,u)satisfies S;(I1,,IL,).
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COROLLARY 12. (cf. [2]) For a Ty space (X,u)the following are
equivalent:

(1) (H,F*) has the Rothberger property.

(2) (X,u)satisfies S1(Il,, ).

COROLLARY 13. For a space (X,u) the following are equivalent:
(1) (H, V™) has the Rothberger property.
(2) (X,u)satisfies Sy(IL;,TI¢).

We end this section by proving a result concerning Rothberger-type
selection principles.

In [7, Lemma) a relation between the property S;(O,0) for each
finite product of a topological space X and the property S;(Q,Q) for
X was given. For closure spaces we prove the next statement.

THEOREM 6. If each finite product of (X, u) satisfies S1(Z,T), then
each finite product of (X, u) has the property S1(ZQ,ZIQ).

Proof. (i) First we prove that if each finite product of X satisfies
S1(Z,7), then X has the property S;(Z,Z2). Let (Uy,) be a sequence
of interior w-covers of X. Let IN = U,ewN,, be a partition of IN into
infinite sets. For each m € IN and each k € N,,, let V, = {U™ | U €
Ui}. Since for the interior operator in the product space (X™,v) the
equality int,(U™) = (int,U)™ holds, (Vx) for k € Np,, is a sequence
of interior covers of X™ as for each =z = (x1,...,2m) € X™ and each
k € N, there is a U € Uy such that {xi,...,2m,} C int, U, so that
z € (int,, U)™. Applying to the sequence (Vy), k € N,,, the assumption
that each finite product of X satisfies S1(Z,Z), there is for each m € IN
a sequence (Vg), Vi € Vy for each k € N, such that the collection
{Vk | k € Ny} is an interior cover of -X™. For each k € Ny, let Uy be
an element in Uy with Vi, = U".

Then the collection {Uy | k € N,,, m € IN} is an interior w-cover
of (X,w)which witnesses for (U,,) that S;(ZQ,Z) holds. Indeed, for
every finite set F = {z1,...,2m} C X thereisa Vi = U* € V; with
(Z1,...,2m) € int,U", hence F C int,Uy.

(ii) Now we show that if X has the property S1(Z€,Z€2), then all
finite powers of X satisfy $:(ZQ,ZQ). Fix m. Let (Uy) be a sequence
of interior w-covers of X™. For each n € N set V, = {V C X |
V™ C U for some U € U,}. The collection V,, is an interior w-cover
of X for each n. Indeed, for every finite set F = {z1,...,2x} C X
there is a U € U,, such that F™ C int,U. We choose a V C X so
that F™ C int, V™ = (int,V)™ C V™ C U. The set V satisfies the
required condition, that is FF C V € V,. Applying the assumption to
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the sequence V), there exist V,, € V,, n € IN, such that the collection
{Va | n € IN} is an interior w-cover of X. For each n we pick U, € Uy,
so that V* C U,. Since the collection {V; | n € IN} is an interior
w-cover of X™ sois {U, |n € IN}. O

2. The Menger-like selection principles

In topological spaces the property Sy, (O, O) is known as the Menger
property. A topological space X has countable fan tightness if for each
x € X the selection principle Sy;(®,,®;) holds.

In closure spaces these definitions read as follows.

DEFINITION 4. A space (X,u)has the Menger property if for every
sequence (Up) of interior covers of X there is a sequence (V,) of fi-
nite collections such that V,, C U,, for each n € IN and the collection
UneNVyn is an interior cover of X.

DEFINITION 5. A space (X, u)has countable fan tightness if for every
x € X and for each sequence (A,) of subsets of X such that z €
Nnemnu(Ar), there exist finite sets B, C A, such that z € u(UnemwBy).

The proofs of the next theorems are analogous to those in the previous
section. The selection principle S is replaced with Sg;,.

THEOREM 7. For a space (X,u)and collections A and ¥ the fol-
lowing are equivalent:

(1) H satisfies the selection principle S fm(q)%*’q)g“) for each H €
H.

(2) Each Y € J satisfies Sy;n(ZA,IX).

THEOREM 8. For a space (X, u)and a collection A the following are
equivalent:

(1) (H,A™) has countable fan tightness.

(2) Each Y € J satisfies Sy;n(TA,IA).

THEOREM 9. For a space (X,u)and collections A and % the fol-
lowing are equivalent:

(1) H satisfies S (Da+, Dst).

(2) (X,u)satisfies Sf;n(ZA,IX).

THEOREM 10. For a space (X,u)and collections A and X the
following are equivalent: '

(1) H satisfies Spin(OAT, OTT).

(2) (X,u)satisfies S p;n(IIp,Ix).
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In particular, when specifying A and ¥ the statements correspond-
ing to Corollaries 1-10 are obtained.

By replacing the principle S; with Sy;, in Theorem 6, we get by a
similar proof

THEOREM 11. If each finite product of (X,u)satisfies S (Z,T),
then each finite product of (X, u) has the property S;,(IQ,IQ).

3. Set-tightness

Recall that the set-tightness ts of a space X is countable if for each
A C X and each = € A there is a sequence (A4,) of subsets of A such

that z € U{A, |n € N} but =z ¢ A, for each n € IN,

THEOREM 12. For a space (X,u)and a collection A the following
are equivalent:

(1) (H,A") has countable set-tightness.

(2) For each Y € J and each interior A-cover U of Y there is a
countable collection {U,, | n € IN} of subsets of U such that no U, is
an interior A-cover of Y and Upewldy, is an interior A-cover of Y.

Proof. Follows from definitions and Lemma. O
In particular, setting A = F(X) (resp. K(X), Q(X)), we get

COROLLARY 14. (cf. [2]) For a space (X,u) the following are equi-
valent:

(1) (H,Z%) has countable set-tightness.

(2) For each Y € J and each interior w-cover U of Y there is a
countable collection {U, | n € IN} of subsets of U such that no U, is
an interior w-cover of Y and UpewUy, is an interior w-cover of Y.

COROLLARY 15. (cf. [2]) For a T2 space (X,u) the following are
equivalent:

(1) (H,F*) has countable set-tightness.

(2) For each Y € J and each interior k-cover U of Y there is a
countable collection {U, | n € IN} of subsets of U such that no U, is
an interior k~cover of Y and U,ewU, is an interior k-cover of Y.

COROLLARY 16. For a space (X,u) the following are equivalent:

(1) (H, V™) has countable set-tightness.

(2) For each Y € J and each interior (-cover U of Y there is a
countable collection {U, | n € IN} of subsets of U such that no Uy, is
an interior ¢-cover of Y and UpewU, is an interior (-cover of Y.
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4. The Pytkeev property

A topological space X has the Pytkeev property if for every A C X
and each z € A\ {z} there is a countable collection {A,, | n € IN} of
countable infinite subsets of A which is a w-network at x, i.e., each
neighborhood of = contains some A,.

Let 7 and o be two topologies on a set X. Then X has the
(1, 0)— Pytkeev property if for every A C X and each z € cl.(A\ {z})
there is a countable collection {A, | n € IN} of countable infinite sub-
sets of A which is a w-network at x with respect to the ¢ topology.
In the next theorem we suppose that for every interior A-cover U of

Y, Y #int, U for each U € U holds.

THEOREM 13. For a space (X,u)and collections A and % the
following are equivalent:

(1) ‘H has the (A", X1)-Pytkeev property.

(2) For each Y € J and each interior A-cover U of Y there is a
sequence (U,,) of infinite subsets of U such that {Nint, U, | n € IN} isa
(not necessarily interior) L-cover of Y. [Nint, Uy, = N{int, U | U € Uy, }]

Proof. As in [4, Theorem 8] by using Lemma. O

In particular, setting A = ¥ = F(X) (resp. A =% = K(X), Q(X)),
we get

COROLLARY 17. (cf. [4]) For a space (X, u) the following are equiv-
alent:

(1) (H,Z") has the Pytkeev property.

(2) For each Y € J and each interior w-cover U of Y there is a
sequence (Uy,) of countable infinite subsets of U such that {Nint,,, |
n € IN} is a (not necessarily interior) w-cover of Y. :

CoOROLLARY 18. (cf. [4]) For a Ty space (X,u)the following are
equivalent:

(1) (H,F*) has the Pytkeev property.

(2) For each Y € J and each interior k-cover U of Y there is a
sequence (Uy,) of countable infinite subsets of U such that {Nint,Uy, |
n € IN} is a (not necessarily interior) k-cover of Y.

COROLLARY 19. For a space (X, u) the following are equivalent:

(1) (H, V™) has the Pytkeev property.

(2) For each Y € J and each interior (-cover U of Y there is a
sequence (U,,) of countable infinite subsets of U such that {Nint,U,, |
n € IN} is a (not necessarily interior) (-cover of Y.
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5. The Hurewicz-like selection principles

The notion of groupability was introduced in [5]. A countable interior
C-cover U of a space (X,u)is groupable if there is a partition U =
Unewly, into finite sets such that for each C € C and for all but finitely
many n there is a U € U, such that C C int,U holds. Let ZC9%
denote the family of groupable interior C-covers of the space.

A countable set A € ®, is groupable if there is a partition A =
Unemw A, into finite sets such that each neighborhood of z has non-
empty intersection with all but finitely many A,,.

Recall that a space X has the Reznichenko property [= is weakly
Fréchet-Urysohn] if for every A C X and each z € A\ A there is a
countable infinite family A of finite pairwise disjoint subsets of A such
that each neighborhood of z meets all but finitely many elements of A.

THEOREM 14. For a space (X,u)and a collection A the following
are equivalent:

(1) (H,A") has the Reznichenko property.

(2) For each Y € J and each interior A-cover U of Y, there is a
sequence (Uy,) of finite pairwise disjoint subsets of U such that each
D € A belongs to int, U, for some U, € U, for all but finitely many
n.

Proof. (1)=(2): Let Y € J and U be an interior A-cover of Y.
By Lemma, Y° € cip+.A where A = {u(U®) |U € U}. By assumption,
there is a sequence (Ay) of finite pairwise disjoint subsets of A such
that each A%-neighborhood of Y°¢ intersects A, for all but finitely
many 7. The sequence (U,) defined by U, = AY satisfies the required
conditions. Indeed, U, are finite, pairwise disjoint and for D € A
such that D C Y, the collection (D°)* is a A*-neighborhood of Y*.
There is ng such that (D)t N A, # @ for each n > ng. Hence, for
every n > ng there is a set A, € A, such that A, C D¢, that is
D cC A¢ = int, U, and U, € U,, holds.

(2)=(1): Let ACH and H € H so that H € cla+A\ A. Then
U = A is an interior A-cover of H® =Y. Applying (2) to Y and U,
there is a sequence (U,) of finite pairwise disjoint subsets of U such that
foreach D CY, D € A, for all but finitely many n there is a U, € U,
such that D C int,U,. For each n we set G, = {u(U®) |U € U,}. The
collection {Gy, | n € IN} satisfies (1). O



Selection principles and hyperspace topologies 1111

By combining Theorem 14 with Theorems 2 and 8 we get the following
statements.

THEOREM 15. For a space (X,u)and a collection A the following
are equivalent:

(1) (H,A™) has the Reznichenko property and countable strong fan
tightness.

(2) Each Y € J satisfies S1(ZA,TAP).

THEOREM 16. For a space (X,u)and a collection A the following
are equivalent:

(1) (H,A™") has the Reznichenko property and countable fan tight-
ness.

(2) Each Y € J satisfies S fin(ZA,TA%P).

In particular, setting A = F(X) (resp. A =K(X), Q(X)), we get

COROLLARY 20. (cf. [4]) For a space (X,u) the following are equiv-
alent:

(1) (H,Z%) has the Reznichenko property and countable strong fan
tightness.

(2) Each Y € J satisfies S1(ZQ, ZQ9P).

COROLLARY 21. (cf. [4]) For a space (X, u) the following are equiv-
alent:

(1) (H,Z™") has the Reznichenko property and countable fan tight-
ness.

(2) Each Y € J satisfies S in(ZQ,IQ9P).

COROLLARY 22. (cf. [4]) For a Ty space (X,u)the following are
equivalent:

(1) (H,F™*) has the Reznichenko property and countable strong fan
tightness.

(2) Each Y € J satisfies S1(ZK,ZKP?).

CoROLLARY 23. (cf. [4]) For a Ty space (X,u)the following are
equivalent:

(1) (H,F*) has the Reznichenko property and countable fan tight-
ness.

(2) Each Y € J satisfies Sy, (ZK,ZK9P).

COROLLARY 24. For a space (X, u) the following are equivalent:

(1) (H, V™) has the Reznichenko property and countable strong fan
tightness.

(2) Each Y € J satisfies S1(ZQ,ZQ%).
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COROLLARY 25. For a space (X,u) the following are equivalent:
(1) (H, V™) has the Reznichenko property and countable fan tight-

ness.
(2) Each Y € J satisfies Sy, (2Q,7Q%).

Using appropriate modifications in the proof of Theorem 6 we get the
statement which includes groupability.

THEOREM 17. If each finite product of (X,u)satisfies S1(Z,T9),
then each finite product of (X, u) has the property Si(Z§,TQ9P).

Proof. (i) First we prove that if each finite product of X satisfies
S1(Z,79), then X has the property S1(Z,ZQ9P). Following the proof
of Theorem 6 and applying the assumption to the sequence (Vg), k €
Ny, there is for each m € IN a sequence (Vj), Vi € Vi for each
k € Ny, such that the collection Wy, = {Vi | k € Np,} is a groupable
interior cover of X™. There is a partition Wy, = U,ewWh into finite
sets such that for each £ € X™ and for all but finitely many v there
is a V € W, such that z € int,V in the product space (X™,v)
holds. Each Wi, = {Vi,)s- -+ Vhy(v)} for some ki(v),... ks(v) €
Np,. For each k € Ny, let Uy be an element in Uy with Vi = U"
and Ymy = {Ux, )5+ - > Uk,(v)}- The collection {Y, | p € IN} where
Vy=UW{Vmu |t =m+v—1;m,v €N} witnesses the groupability of
the interior w-cover Y = UuemwYy = {Uk | k € Npm, m € IN} of (X, u).

Indeed, for every finite subset F' = {z1,...,z,n} C X thereis a v
such that for all v € IN, v > 1y implies there is an m € IN and a
V € Wy such that z = (21,...,2Z,) € int,V holds. Hence, there is a
to = m+1p such that for all 4 € IN, 4 > po implies thereisa U € ),
such that F C int,U.

(ii) Now we show that if X has the property Si(ZQ,ZQ9), then
all finite powers of X satisfy S;(Z,ZQ9P). As in Theorem 6, fix m.
Given a sequence (Uy,) of interior w-covers of X™ consider a sequence
(V) of interior w-covers of X where V, = {V C X | V™ C U for
some U € U,}. By the assumption there exist V,, € V,, n € IN, such
that the collection W = {V;, | n € IN} is a groupable interior w-cover
of X. For each n we pick U, € U, so that V,* C U,. Since the
collection {V,* | n € IN} is a groupable interior w-cover of X™, so is
{Uy | n € IN}. O

In a similar way we prove

THEOREM 18. If each finite product of (X,u)satisfies S ¢ (Z,Z9),
then each finite product of (X, u) has the property S i, (Z82,TQ97).
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We conclude this paper with the next statements.

THEOREM 19. (see [4]) For a space (X, u)and collections A and %
the following are equivalent:

(1) H satisfies Sl(@%+,(®%+)gp) for each H € H.

(2) Each Y € J satisfies S1(ZA,I397).

Proof. The constructions are analogous to those in the previous the-
orems. O

By replacing the selection principle S; with Sy;, we get

THEOREM 20. (see [4]) For a space (X, u)and collections A and ¥
the following are equivalent:

(1) H satisfies Sfm(@AJr,(@IE;)g”) for each H € H.

(2) Each Y € J satisfies Syin(TA,IX).
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