DOI QR코드

DOI QR Code

Protopanaxadiol modulates LPS-induced inflammatory activity in murine macrophage RAW264.7 cells

  • Lee, Whi-Min (Department of Veterinary Physiology College of Veterinary Medicine, Kyungpook National University) ;
  • Kim, Sung-Dae (Department of Veterinary Physiology College of Veterinary Medicine, Kyungpook National University) ;
  • Kim, Kil-Soo (Department of Veterinary Physiology College of Veterinary Medicine, Kyungpook National University) ;
  • Song, Yong-Bum (KT & G Central Research Institute) ;
  • Kwak, Yi-Seong (KT & G Central Research Institute) ;
  • Cho, Jae-Youl (School of Bioscience and Biotechnology, Kangwon National University) ;
  • Park, Hwa-Jin (College of Biomedical Science and Engineering, Inje University) ;
  • Oh, Jae-Wook (Department of Anatomy, College of Medicine, Chosun University) ;
  • Rhee, Man-Hee (Department of Veterinary Physiology College of Veterinary Medicine, Kyungpook National University)
  • Published : 2006.12.31

Abstract

Protopanaxadiol (PPD) is a mixture of protopanaxadiol type saponins with a dammarane skeleton, from Korean red ginseng (Panax ginseng C.A. Meyer; Araliaceae). Korean ginseng is well-known herb to treat almost all kinds of diseases in Oriental medicine. This herb was particularly prescribed for treatment various inflammatory diseases, including rheumatoid arthritis, atherosclerosis, and diabetes mellitus, for centuries. To understand the efficacy of ginseng against inflammatory diseases, we aimed to show anti-inflammatory activities of the PPD in murine macrophage cell line, RAW264.7 cells using nitric oxide (NO) production assay and the expressions of pro-inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$), and IL-6, and monocyte chemotactic protein-1 (MCP-1). We found that PPD saponin significantly blocked LPS ($1{\mu}g/ml$)-induced NO production in a dose-dependent manner. In addition, PPD abrogated the expressions of LPS-induced pro-inflammatory cytokines, such as IL-$1{\beta}$ and MCP-1. Moreover, cyclooxygenase (COX)-2, a critical enzyme to produce prostaglandin E2 (PGE2), was significantly inhibited by PPD in LPS-activated RAW264.7 cells. Taken together, these results suggested that anti-inflammatory efficacy of Korean red ginseng on inflammatory diseases is, at least, due to the NO inhibitory activity and the inhibition of the expressional level of inflammatory cytokines and/or mediators.

Keywords

References

  1. Liu, C.X. and Xiao, P.G. : Recent advances on ginseng research in China. J Ethnopharmacol 36(1), 27-38 (1992) https://doi.org/10.1016/0378-8741(92)90057-X
  2. Gillis, C.N. : Panax ginseng pharmacology: a nitric oxide link? Biochem Pharmacol 54, 1-8 (1997) https://doi.org/10.1016/S0006-2952(97)00193-7
  3. Attele, A.S., Wu, J.A. and Yuan, C.S. : Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 58, 1685-1693 (1999) https://doi.org/10.1016/S0006-2952(99)00212-9
  4. Lee, D.H., Park, B.J., Lee, M.S., Choi, J.B., Kim, J.K., Park, J.H. and Park, J.C. : Synergistic Effect of Staphylococcus aureus and LPS on Silica-Induced Tumor Necrosis Factor Production in Macrophage Cell Line J774A.1. J Microbiol Biotechnol 16, 136-140 (2006)
  5. Sun, J., Hu, S. and Song, X. : Adjuvant effects of protopanaxadiol and protopanaxatriol saponins from ginseng roots on the immune responses to ovalbumin in mice. Vaccine in press (2006)
  6. Rivera, E., Ekholm Pettersson, F., Inganas, M., Paulie, S. and Gronvik, K.O. : The Rb1 fraction of ginseng elicits a balanced Th1 and Th2 immune response. Vaccine 23, 5411-5419 (2005) https://doi.org/10.1016/j.vaccine.2005.04.007
  7. Hu, S., Concha, C., Lin, F. and Persson Waller, K. : Adjuvant effect of ginseng extracts on the immune responses to immunisation against Staphylococcus aureus in dairy cattle. Vet Immunol Immunopathol 91, 29-37 (2003) https://doi.org/10.1016/S0165-2427(02)00264-7
  8. Berek, L., Szabo, D., Petri, I.B., Shoyama, Y., Lin, Y.H. and Molnar, J. : Effects of naturally occurring glucosides, solasodine glucosides, ginsenosides and parishin derivatives on multidrug resistance of lymphoma cells and leukocyte functions. In Vivo 15, 151-156 (2001)
  9. Park, E.K., Shin, Y.W., Lee, H.U., Kim, S.S., Lee, Y.C., Lee, B.Y. and Kim, D.H. : Inhibitory effect of ginsenoside Rb1 and compound K on NO and prostaglandin E2 biosyntheses of RAW264.7 cells induced by lipopolysaccharide. Biol Pharm Bull 28, 652-656 (2005) https://doi.org/10.1248/bpb.28.652
  10. Lee, D.E., Kim, H.Y., Song, I.H., Kim, S.K., Seul, J.H. and Kim, H.S. : Effect of Leptin on the Expression of Lipopolysaccharide-Induced Chemokine KC mRNA in the Mouse Peritoneal Macrophages. J Microbiol Biotechnol 14, 722-729 (2004)
  11. Gallucci, S., Provenzano, C., Mazzarelli, P., Scuderi, F. and Bartoccioni, E. : Myoblasts produce IL-6 in response to inflammatory stimuli. Int Immunol 10, 267-273 (1998) https://doi.org/10.1093/intimm/10.3.267
  12. Lee, Y.B., Nagai, A. and Kim, S.U. : Cytokines, chemokines, and cytokine receptors in human microglia. J Neurosci Res 69, 94-103 (2002) https://doi.org/10.1002/jnr.10253
  13. Klein, R.D., Su, G.L., Aminlari, A., Alarcon, W.H. and Wang, S.C. : Pulmonary LPS-binding protein (LBP) upregulation following LPS-mediated injury. J Surg Res 78, 42-47 (1998) https://doi.org/10.1006/jsre.1998.5396
  14. Nathan, C. : Nitric oxide as a secretory product of mammalian cells. FASEB J 6, 3051-3064 (1992) https://doi.org/10.1096/fasebj.6.12.1381691
  15. Laskin, D.L. and Pendino, K.J. : Macrophages and inflammatory mediators in tissue injury. Annu Rev Pharmacol Toxicol 35, 655-677 (1995) https://doi.org/10.1146/annurev.pa.35.040195.003255
  16. Cho, J.Y., Park, S.C., Kim, T.W., Kim, K.S., Song, J.C., Kim, S.K., Lee, H.M., Sung, H.J., Park, H.J., Song, Y.B., Yoo, E.S., Lee, C.H. and Rhee, M.H. : Radical scavenging and anti-inflammatory activity of extracts from Opuntia humifusa Raf. J Pharm Pharmacol 58, 113-119 (2006) https://doi.org/10.1211/jpp.58.1.0014
  17. Zaccone, G., Mauceri, A. and Fasulo, S. : Neuropeptides and nitric oxide synthase in the gill and the air-breathing organs of fishes. J Exp Zoolog A Comp Exp Biol 305, 428-439 (2006)
  18. Redington, A.E. : Modulation of nitric oxide pathways: therapeutic potential in asthma and chronic obstructive pulmonary disease. Eur J Pharmacol 533, 263-276 (2006) https://doi.org/10.1016/j.ejphar.2005.12.069
  19. Crespi, F. : Dihydropyridines, nitric oxide and vascular protection. Curr Vasc Pharmacol 3, 195-205 (2005) https://doi.org/10.2174/1570161053586949
  20. Paramo, J.A., Beloqui, O. and Orbe, J. : [Cyclooxygenase-2: a new therapeutic target in atherosclerosis?]. Med Clin (Barc) 126, 782-786 (2006) https://doi.org/10.1157/13089104
  21. Sinicrope, F.A. : Targeting cyclooxygenase-2 for prevention and therapy of colorectal cancer. Mol Carcinog 45, 447-454 (2006) https://doi.org/10.1002/mc.20232
  22. Bae, E.A., Han, M.J., Shin, Y.W. and Kim, D.H. : Inhibitory effects of Korean red ginseng and its genuine constituents ginsenosides Rg3, Rf, and Rh2 in mouse passive cutaneous anaphylaxis reaction and contact dermatitis models. Biol Pharm Bull 29, 1862-1867 (2006) https://doi.org/10.1248/bpb.29.1862
  23. Shin, Y.W., Bae, E.A., Kim, S.S., Lee, Y.C. and Kim, D.H. : Effect of ginsenoside Rb1 and compound K in chronic oxazolone-induced mouse dermatitis. Int Immunopharmacol 5, 1183-1191 (2005) https://doi.org/10.1016/j.intimp.2005.02.016
  24. Oh, G.S., Pae, H.O., Choi, B.M., Seo, E.A., Kim, D.H., Shin, M.K., Kim, J.D., Kim, J.B. and Chung, H.T. : 20(S)-Protopanaxatriol, one of ginsenoside metabolites, inhibits inducible nitric oxide synthase and cyclooxygenase-2 expressions through inactivation of nuclear factor-kappaB in RAW 264.7 macrophages stimulated with lipopolysaccharide. Cancer Lett 205, 23-29 (2004) https://doi.org/10.1016/j.canlet.2003.09.037
  25. Reiss, A.B. and Glass, A.D. : Atherosclerosis: immune and inflammatory aspects. J Investig Med 54, 123-131 (2006) https://doi.org/10.2310/6650.2006.05051
  26. Pharoah, D.S., Varsani, H., Tatham, R.W., Newton, K.R., de Jager, W., Prakken, B.J., Klein, N. and Wedderburn, L.R. : Expression of the inflammatory chemokines CCL5, CCL3 and CXCL10 in juvenile idiopathic arthritis, and demonstration of CCL5 production by an atypical subset of CD8+ T cells. Arthritis Res Ther 8, R50 (2006) https://doi.org/10.1186/ar1913
  27. Szekanecz, Z., Szucs, G., Szanto, S. and Koch, A.E. : Chemokines in rheumatic diseases. Curr Drug Targets 7, 91-102 (2006) https://doi.org/10.2174/138945006775270231
  28. Cho, J.Y., Yoo, E.S., Baik, K.U., Park, M.H. and Han, B.H. : In vitro inhibitory effect of protopanaxadiol ginsenosides on tumor necrosis factor (TNF)-alpha production and its modulation by known $TNF-{\alpha}$ antagonists. Planta Med 67, 213-218 (2001) https://doi.org/10.1055/s-2001-12005
  29. Charo, I.F. and Taubman, M.B. : Chemokines in the pathogenesis of vascular disease. Circ Res 95, 858-866 (2004) https://doi.org/10.1161/01.RES.0000146672.10582.17
  30. Boisvert, W.A. : Modulation of atherogenesis by chemokines. Trends Cardiovasc Med 14, 161-165 (2004) https://doi.org/10.1016/j.tcm.2004.02.006
  31. Shin, Y.W., Bae, E.A., Kim, S.S., Lee, Y.C., Lee, B.Y., Kim, D.H. : The effects of ginsenoside Re and its metabolite, ginsenoside Rh1, on 12-O-tetradecanoylphorbol 13-acetate- and oxazolone-induced mouse dermatitis models. Planta Med 72, 376-378 (2006) https://doi.org/10.1055/s-2005-916217
  32. Radad, K., Gille, G., Liu, L., Rausch, W.D. : Use of ginseng in medicine with emphasis on neurodegenerative disorders. J Pharmacol Sci 100, 175-186 (2006) https://doi.org/10.1254/jphs.CRJ05010X
  33. Lai, D.M., Tu, Y.K., Liu, I.M., Chen, P.F., Cheng, J.T. : Mediation of beta-endorphin by ginsenoside Rh2 to lower plasma glucose in streptozotocin-induced diabetic rats. Planta Med 72, 9-13 (2006) https://doi.org/10.1055/s-2005-916177

Cited by

  1. Nutrigenomic approach to tackle the unpleasant journey to Helicobacter pylori-associated gastric carcinogenesis vol.12, pp.3, 2011, https://doi.org/10.1111/j.1751-2980.2011.00492.x
  2. Identification of Human UDP-Glucuronosyltransferase 1A4 as the Major Isozyme Responsible for the Glucuronidation of 20(S)-Protopanaxadiol in Human Liver Microsomes vol.17, pp.3, 2016, https://doi.org/10.3390/ijms17030205
  3. )-protopanaxadiol and its three metabolites in rat plasma by LC-MS/MS: application to their pharmacokinetic studies vol.32, pp.8, 2018, https://doi.org/10.1002/bmc.4252
  4. Polyacetylenes from the roots of cultivated-wild ginseng and their cytotoxicity in vitro vol.31, pp.2, 2008, https://doi.org/10.1007/s12272-001-1134-1