Treatment of Food Garbage Using a Treatment Reactor and Microbial Consortium

발효소멸기를 이용한 음식물 쓰레기의 감량 및 악취제거

  • Koh, Rae-Hyun (Division of Biological Sciences, Kangwon National University) ;
  • Lee, Kang-Hyoung (Division of Biological Sciences, Kangwon National University) ;
  • Yoo, Jin-Soo (Microbial World Co., Ltd) ;
  • Song, Hong-Gyu (Division of Biological Sciences, Kangwon National University)
  • 고래현 (강원대학교 자연과학대학 생명과학부) ;
  • 이강형 (강원대학교 자연과학대학 생명과학부) ;
  • 유진수 ((주)미생물나라) ;
  • 송홍규 (강원대학교 자연과학대학 생명과학부)
  • Published : 2006.12.30

Abstract

Disposal of food garbage in most large cities is very troublesome task. To date, microbiological treatment has been received an attention as a garbage decomposition process. In this study, the inoculation effect of some cellulase, amylase and protease-producing bacteria and photosynthetic bacteria on food garbage treatment was examined. They were added into a treatment reactor specially designed in this study together with food garbage and incubated in various conditions for 15 days and the removals of food garbage and foul smell produced during the treatment were analyzed. Average decomposition percentages of the inoculated food garbage in treatment reactor were 11 and 18.8% under intermittent aeration (once in a day) and continuous aeration conditions (2 L/min), respectively, and these were higher than removal percentages in the corresponding uninoculated reactors,3.4 and 13.8%. Optimal pH and temperature for food garbage decomposition by inoculated bacteria were pH 7.0 and $30^{\circ}C$. Maximal decomposition percentage in the inoculated food garbage was 35% under the optimal condition (pH 7, $30^{\circ}C$, and continuous aeration). The malodor compounds generated from food garbage treatment such as complex foul smell and sulfur compounds were effectively reduced about 84% and 25.5%, respectively, with a biofilter composed of purple nonsulfur bacteria trapped in sponge. This decomposing capability of food garbage by these bacteria can be utilized for the rapid and efficient treatment of food garbage.

음식물쓰레기의 효과적인 처리를 위해 발효소멸기를 제작하고 유기물 분해능이 우수한 균주들을 접종하여 음식물쓰레기의 감량과 악취제거능을 조사하였다. 먼저 Bacillus subtilis (cellulase 생성), Bacillus cereus (amylase 생성), Sphingobacterium faecium (protease 생성)를 분리하여 효소의 활성을 조사한 결과 각각 최대 153, 219, 412 unit/ml의 우수한 활성을 나타냈다. 미생물에 의한 음식물쓰레기의 처리효과를 확인하기 위해 먼저 간헐적 통기시의 감량효율을 검토한 결과 15일 후 접종시료가 약 11%, 비접종시료가 3.4%의 분해율을 나타내었다. 간헐전 통기시 pH가 급격히 낮아지면서 처리효율이 낮아지는 문제를 해결하기 위해 지속적으로 통기시키면서 음식물 쓰레기 처리 효율을 측정한 결과 간헐적 통기에서의 처리 효율에 비해 약 10% 정도 분해율이 증가했고, 교반기 내부의 pH가 5$\sim$7 수준에서 유지되었다. 음식물 쓰레기 처리에 가장 적합한 조건을 찾기 위해 pH와 온도를 조절하면서 분해효율을 조사한 결과 pH 7, $30^{\circ}C$에서 15일 후 가장 우수한 35%의 분해효율을 나타냈다. 한편 음식물 쓰레기가 분해되면서 발생하는 악취를 저감시키기 위해 biofilter를 제작, 장착함으로써 제어하고자 하였다. 황 화합물을 산화시키는 홍색비유황세균을 함유한 biofilter를 장착함으로써 5$\sim$6배 정도로 복합악취를 저감시킬 수 있었으며, 악취 원인물질 중 중요한 황 화합물인 methylmercaptan은 213 ${\mu}g/L$에서 158.6 ${\mu}g/L$으로, hydrogen sulfide 또한 2473.8 ${\mu}g/L$에서 1262 ${\mu}g/L$로 크게 감소하였다. 이 연구 결과는 음식물쓰레기의 효율적인 처리 및 악취제거에 기여할 수 있을 것으로 판단되며, 음식물쓰레기 처리에 이용할 수 있는 미생물자원의 확보 측면에서도 큰 의의가 있다고 할 수 있다.

Keywords

References

  1. 권성환, 권정안, 이동훈, 김태동. 2001. Fed-batch식 고속발효공정에서 pH 재조정이 음식물쓰레기 처리효율에 미치는 영향. J. Kor. Solid Wastes Eng. Soc. 18, 218-227
  2. 권오진, 정영건. 1995. Cellulomonas sp. KL-6에 의한 섬유소 분해효소의 생산. 한국농화학회지 38, 490-495
  3. 김경철, 배영수, 김시욱, 김성준. 2003. 사상균 FM04에 의한 amylase 생산 및 음식물 쓰레기의 효소학적 가수분해. 한국생물공학회지 18, 363-370
  4. 김기연, 김희규, 송병철, 차창준. 2006. Amylase와 protease의 활성이 높은 현미 발효 미생물의 선별. 한국미생물학회지 42, 160-163
  5. 김동원, 정혜원, 이경석, 박형용, 이기영. 2005. 각종 미생물에 의한 음식물쓰레기 침출수의 악취저감 연구. 유기물자원화 13, 91-97
  6. 류종성, 임종기, 이재열. 1998. 광합성세균 Rhodopseudomonas capsulata에 의한 돈폐수 처리. J. Environ. Sci. 12, 29-42
  7. 류희옥, 조경숙. 2005. Denaturing gradient gel electrophoresis를 이용한 음식물 쓰레기 퇴비화 세균 군집분석. Kor. J. Microbiol. Biotechnol. 33, 226-230
  8. 박석환. 1998. 염분도와 수분함량이 음식폐기물의 호기성 퇴비화에 미치는 영향. 한국환경위생학회지 24, 120-131
  9. 배귀석, 전광주, 이상석, 최종원, 박상엽, 장문백, 맹원재. 1998. 한국재래산양 반추위 내 주요 섬유소 분해 미생물에 의한 암모니아처리 볏짚의 발효특성에 관한 연구. Kor. J. Dairy Sci. 20, 9-20
  10. 신항식, 황응주. 1998. 소규모 소멸식 음식물찌꺼기 퇴비화 장치의 운전 성능 평가. Kor. Solid Wastes Eng. Soc. 16, 29-35
  11. 오광근, 이철우, 전영중, 이재홍. 1996. 광합성세균 미생물막 반응기에 의한 유기성폐수의 처리특성. Kor. J. Appl. Microbiol. Biotechnol. 24, 738-742
  12. 최경민, 박응로, 주홍신, 양재경, 이기영, 이성택, 이무춘. 1996. 광합성세균을 이용한 돈분 폐수처리에 관한 연구. 폐기물자원화 4, 11-17
  13. 홍정희, 안용근, 정진도. 2003. 음식물쓰레기 소멸제의 쓰레기 소멸특성에 관한 연구(I). 대한위생학회지 18, 58-67
  14. 홍정희, 정진도. 2003. 소멸제 첨가에 따른 음식물쓰레기 소멸 효과 분석. 대한환경공학회지 25, 732-783
  15. 홍정희, 정진도. 2005. 광합성세균 배양액이 음식물쓰레기에 미치는 영향. 한국폐기물학회지 22, 113-119
  16. 환경부. 1999 폐기물 관리법 시행규칙 제 9조 제 2호
  17. 환경부. 2003. 2002 전국 폐기물 발생 및 처리현황, 107
  18. Basma, G, S. K. Alya, and M. Nasri. 2003. Stability studies of protease from Bacillus cereus BG1. Enz. Microb. Technol. 32, 513-518 https://doi.org/10.1016/S0141-0229(03)00004-8
  19. Breuil, C. and J.N. Saddler. 1985. Comparison of the 3,5-dinitrosalicylic acid and Zelson-Somogyi methods of assaying for reducing sugars and determining cellulase activity. Enz. Microb. Technol. 7, 327-332 https://doi.org/10.1016/0141-0229(85)90111-5
  20. Emtiazi, G. and I. Nahvi. 2004. Production of thermostable $\alpha$-amylase and cellulase from Cellulomonas sp. J. Microbiol. Biotechnol. 14, 1196-1199
  21. McKay, G. 2002. Dioxin characterization, formation and minimization during municipal solid waste (MSW) incineration: review. Chem. Eng. J. 86, 343-368 https://doi.org/10.1016/S1385-8947(01)00228-5
  22. Ronald, M.T. and J.W. Peter. 1982. Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43, 777-780
  23. Yun, S.I. 2003. Treatment of waste food using mixed microorganisms responsible for the degradation of malodor compounds. Kor. J. Microbiol. Biotechnol. 31, 413-420