Study on the Anti-HT-29 Human Colon Cancer Activity of $\beta$-Glucans and Their Enzymatically Hydrolyzed Oligosaccharides from Agalicus blazei Murill

아가리쿠스로부터 분리한 $\beta$-glucan과 그 올리고당류의 HT-29 인체 대장암 세포에 대한 항암 활성에 관한 연구

  • Lee, Mi-Young (Department of Biomedical Laboratory Science and Biohealth Products Research Center, Inje University) ;
  • Kim, Ki-Hoon (Department of Biomedical Laboratory Science and Biohealth Products Research Center, Inje University) ;
  • Kim, Yea-Woon (Department of Biomedical Laboratory Science and Biohealth Products Research Center, Inje University) ;
  • Chang, Hun-Gil (Department of Biomedical Laboratory Science and Biohealth Products Research Center, Inje University) ;
  • Lee, Dong-Seok (Department of Biomedical Laboratory Science and Biohealth Products Research Center, Inje University)
  • 이미영 (인제대학교 의생명공학대학 임상병리학과) ;
  • 김기훈 (인제대학교 의생명공학대학 임상병리학과) ;
  • 김예운 (인제대학교 의생명공학대학 임상병리학과) ;
  • 장헌길 (인제대학교 의생명공학대학 임상병리학과) ;
  • 이동석 (인제대학교 의생명공학대학 임상병리학과)
  • Published : 2006.12.30

Abstract

[ $\beta$ ]-Glucans (AG) were prepared from Agaricus blazei cultured in the medium fortified with the roots of Pueraria spp. by repeated extraction with hot water, gel filtration chromatography and DEAE ion exchange chromatography. Oligosaccharides (AO) were derived from the hydrolysis of AG by an endo-$\beta$-(1$\rightarrow$6)-glucanase from Bacillus megaterium. The anti-HT-29 human colon cancer activity of AG or AO was investigated using MTT assay, apoptosis assay, cell cycle analysis, and cDNA microairay. AG and AO both inhibited proliferation and growth of HT-29 cells, and stimulated apoptosis of the cells in a dose-dependent manner. In cell cycle analysis, treating HT-29 cells with AG or AO resulted in the increase of cells in the G0 (sub-G1) and G1 phase. Especially, AO was more effective in inducing G0/G1 cell cycle arrest than AG. To screen the genes involved in the increase of apoptosis, the gene expression profile of the HT-29 cells treated with AO was examined by cDNA microarray. While several genes involved in cell cycle progression (CCND2 and CDK2) were down-regulated, many genes involved in apoptosis (TNFSF9, TNFRSF9, FADD, CASP8, BAD, CRADD, CASP9 etc), cell cycle inhibitor (CDKN2A), immune response (IL6, IL18, IL6R etc), and tumor suppressor (CEACAM1, TP53BP2, IRF1, and PHB) were up-regulated. These results suggest that AO could inhibit the proliferation and growth of HT-29 cells by G0/G1 cell cycle arrest and induction of apoptosis.

칡을 첨가하여 배양한 아가리쿠스버섯(Agaricus blaxei Murill)으로 부터 열수추출, gel filtration chromatography, DEAE ion exchange chromatography를 통하여 아가리쿠스 $\beta$-glucan (AG)을 추출하였다. 추출한 아가리쿠스 $\beta$-glucan에 Bacillus megaterium 유래의 endo-$\beta$-(1$\rightarrow$6)-glucanase를 처리하여 올리고당류(AO)를 얻었다. 이렇게 얻은 AG와 AO를 이용하여 HT-29 인체 대장암 세포에 대한 항암 활성을 조사한 결과, 암세포의 성장 억제 효과는 시료의 처리 농도에 의존적으로 증가하였으며, apoptosis assay에서 암세포의 apoptosis 유발이 농도에 의존적으로 증가되었다. 또한, 암세포의 세포 주기를 분석한 결과, apoptosis 발생을 뜻하는 G0 (sub-G1)기와 G1기의 비율이 증가한 반면 S기와 G2/M기는 대조군에 비해 감소되었다. 이러한 결과를 바탕으로 암세포의 apoptosis 증가에 대한 AO의 작용이 어떤 유전자와 연관이 있는지를 알아보기 위하여 cDNA microarray를 통해 유전자의 발현율을 검색한 결과, apoptosis의 내부 외부 경로에 영향을 주는 유전자(TNESE9, TNFRSF9, FADD, CASP8, BAD, CRADD, CASP9 등)의 발현이 증가되었고 세포 분열 주기의 진행과 관련된 유전자(CCND2와 CDK2)의 발현이 감소되었으며, 세포 분열 주기를 지체시키는 유전자 (CDKN2A)의 발현은 증가되었다. 또한, 사이토카인을 암호하는 유전자 (IL6, IL18, IL6R 등)와 tumor suppressor와 관련된 유전자 (CEACAM1, TP53BP2, IRF1및 PHB)의 발현이 2배 이상 증가된 것을 확인할 수 있었다. 따라서 HT-29 인체 대장암세포에 대한 AO의 성장 억제 작용은 G0/Gl기를 지체시켜 암세포 증식을 억제하고 apoptosis에 의해 암세포를 사멸시키는 항암 활성을 나타내는 것으로 확인되었으며, 특허 AO가 AG보다 현저한 활성을 보였다. 더 나아가 아가리쿠스 $\beta$-glucan (AG)과 올리고당류 (AO)는 항암 활성을 가진 대체 의약 소재로 개발될 수 있을 것으로 기대된다.

Keywords

References

  1. Ahmad, M., S.M. Srinivasula, L. Wang, R.V. Talanian, G. Litwack, T. Fernandes-Alnernri, and E.S. Alnernri, 1997. CRADD, a novel human apoptotic adaptor molecule for caspase-2, and FasL/tumor necrosis factor receptor-interacting protein RIP. Cancer Res. 57, 615-619
  2. Chang, H.Y. and X. Yang. 2000. Proteases for cell suicide: Functions and regulations of caspases. Microbiol. Mol. Biol. Rev. 64, 821-846 https://doi.org/10.1128/MMBR.64.4.821-846.2000
  3. Choi, J.W, D.Y Ryu., Y.K. Kim, E.G. Hong, M.S. Kwun, and J.S. Han. 2000. Extraction and purification ofbioactive materials from Agaricus blazei fruiting bodies. Korean J. Biotechnol. Bioeng. 15, 293-298
  4. Choi, Y.B., K.S. Kim, K.H. Lee, and H.S. Sohn. 1995. Development of soy oligosaccharides. Korea Soybean Digest. 12, 68-74
  5. Collette, Y., A. Gilles, P. Pontaroti, and D. Olive. 2003. A co-evolution perspective of the TNFSF and TNFRSF families in the immune system. Trends Immunol. 24, 387-394 https://doi.org/10.1016/S1471-4906(03)00166-2
  6. Ebina, T. and Y. Fugimiya. 1998. Antitumor effects of a peptideglucan preparation extractied from Agaricus blazei in a doublegrafted tumor system in mice. Biotherapy. 11, 259-265 https://doi.org/10.1023/A:1008054111445
  7. Ishii, K., T. Kita, J. Hirata, T. Tode, Y. Kikuchi, and I. Nagata. 1993. Antitumor effect of PSK and its combined effect with CDDP on ovarian serous adenocarcinoma-bearing nude mice. Nippon Sanko Fujinka Gakkai Zasshi. 45, 333-339
  8. Kawagishi, H., A. Nomura, T. Yumen, T. Mizuno, T. Hagiwara, and T. Nakamura. 1988. Isolation and properties of a lectin from the fruiting bodies of Agaricus blasei. Carbohydr. Res. 183, 150-154 https://doi.org/10.1016/0008-6215(88)80057-0
  9. Kidd, P.M. 2000. The use of mushroom glucans and proteoglycans in cancer treatment. Altern. Med. Rev. 5, 4-27
  10. Kim, J.Y., W.K. Kim, H.Y. Kim, M.H. Kim, and S.H. Kim. 2000. Effects of soyoligosaccharides and varing dietary fats on intestinal microflora, lipid profiles and immune responses in rats. Korean J. Nutrition. 33, 597-612
  11. Kim, K.H., Y.O. Kim, B.S. Ko, H.J. Youn, and D.S. Lee. 2004. Overexpression of the gene(bglBCI) from Bacillus circulans encoding an endo-$\beta$-(1$\rightarrow$3), (1$\rightarrow$4)-glucanase useful for the preparation of oligosaccharides from barley $\beta$-glucan. Biotechnol. Lett. 26, 1749-1755 https://doi.org/10.1007/s10529-004-4581-1
  12. Kim, Y.W., K.H. Kim, H.J. Choi, and D.S. Lee. 2005. Anti-diabetic activity of $\beta$-glucans and their enzymatically hydrolyzed oli-gosaccharides frorn Agaricus blazei. Biotechnol. Leu. 27, 483-487 https://doi.org/10.1007/s10529-005-2225-8
  13. Lee, M.H., H.J. Lee, and I.S. Cho. 1998. Chemical composition of Agaricus blazei Murill fruiting bodies cultivated in a Korea local farm. J. Fd Hyg. Safety. 13, 94-98
  14. Liu, Z.J., X. Lu, and S. Zhong. 2005. ASPP-Apoptotic specific regulator of p53. Biochim. Biophys. Acta. 1756, 77-80
  15. Moon, B.K. 2002. Anesthesiology and apoptosis. Korean J. Anesthesiol. 42, 563-574 https://doi.org/10.4097/kjae.2002.42.5.563
  16. Zha, J., H. Harada, K. Osipov, J. Jockel, G. Waksman, and S.J. Korsmeyer. 1997. BH3 domain of BAD is required for heterodimerization with BCL-XL and pro-apoptotic activity. J. Biol. Chem. 272, 24101-24104 https://doi.org/10.1074/jbc.272.39.24101
  17. Mishra, S., L.C, Murphy, B.L.G. Nyomba, and L.J. Murphy. 2005. Prohibitin: a potential target for new therapeutics. Trends Mol. Med. 11, 192-197 https://doi.org/10.1016/j.molmed.2005.02.004
  18. Peris, K., G. Stanta, M.C. Fargnoli, S. Bonin, A. Felli, A. Amantea, and S. Chimenti. 1999. Reduced expression of CDKN2a/p16INK4a in mycosis fungoldes. Arch. Dermatol. Res. 291, 207-211 https://doi.org/10.1007/s004030050395
  19. Seo, B.I. 2003. A study on Agaricus blazei. J. Appl. Oriental Medicine. 3, 83-89
  20. Sherr, C.J. 1995. Mammalian G1 cyelins and cell cyele progression. Proc. Assoc. Am. Physicians. 107, 181-186
  21. Suzuki, M., S. Higuchi, Y. Taki, S. Taki, K. Miwa, and J. Hamuro. 1990. Induction of endogenous Iymphokine-activated killer activity by combined administration of lentinan and interleukin 2. Int. J. Immunophannacol. 12, 613-623 https://doi.org/10.1016/0192-0561(90)90098-8
  22. Taper, H.S. and M.B. Roberfroid. 2002. Inulin/oligofructose and anticancer therapy. British J. Nutrition. 87, S283-S286 https://doi.org/10.1079/BJN/2002549
  23. Tsukamoto, K., N. Ohta, Y. Shirai, and M. Emi. 1998. A highly polymorphic CA repeat marker at the human interleukin 6 receptor (IL6R) locus. J. Hum. Genet. 43, 289-290
  24. Vermes, I., C. Haanen, H. Steffens-Nakken, and C. Reuteling-sperger. 1995. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Meth. 184, 39-51 https://doi.org/10.1016/0022-1759(95)00072-I
  25. Volpert, O., W. Luo, T.J. Liu, V.T. Estrera, C. Logothetis, and S.H. Lin. 2002. Inhibition of prostate tumor angiogenesis by the tumor suppressor CEACAM1. J. Biol. Chem. 277, 35696-35702 https://doi.org/10.1074/jbc.M205319200
  26. Wehrli, P., I. Viard, R. Bullani, J. Tschopp, and L.E. French. 2000. Death receptors in cutaneous biology and disease. J. Invest. Dermatol. 115, 141-148 https://doi.org/10.1046/j.1523-1747.2000.00037.x
  27. Yamanaka, R., J. Honma, N. Tsuchiya, N. Yajima, T. Kobayashi, and R. Tanaka. 2005. Tumor lysate and IL-18 loaded dendritic cells elicits Th1 response, tumor-specific CD8+ cytotoxic T cells in patients with malignant glioma. J. Neuro-Oncol. 72, 107-113 https://doi.org/10.1007/s11060-004-3550-9
  28. Zhou, Y., S. Wang, A. Gobi, and K. Oberg. 2000. The interferon-a regulation of interferon regulatory factor 1(IRF-l) and IRF-2 has therapeutic implications in carcinoid tumors. Ann. Oncol. 11, 707-714 https://doi.org/10.1023/A:1008314804492