Adsorption of Heavy Metal onto the Extracellular Polysaccharide Produced by the Purple Nonsulfur Photosynthetic Bacteria Rhodopseudomonas sp. KH4

홍색 비황 광합성 세균 Rhodopseudomonas sp. KH4의 Extracellular polysaccharide의 중금속 흡착

  • Jeong, Jeong-Hwa (Department of Biological Engineering, Kyonggi University) ;
  • Seo, Pil-Soo (Department of Korea biological resourse center, Kyonggi University) ;
  • Kong, Sung-Ho (Department of Chemical Engineering, Hanyang University) ;
  • Lee, Jong-Yeol (Beautiful Environmental Construction Co., Ltd.) ;
  • Lee, Sang-Seob (Department of Biological Engineering, Kyonggi University)
  • 정정화 (경기대학교 생명공학과) ;
  • 서필수 (경기대학교 생물자원 특성화 사업단) ;
  • 공성호 (한양대학교 화학공학과) ;
  • 이종렬 (아름다운환경건설(주)) ;
  • 이상섭 (경기대학교 생명공학과)
  • Published : 2006.12.30

Abstract

In the present study, we examined biosorption characteristics of heavy metals onto the extracellular polysaccharide (EPS) produced by the purple nonsulfur photosynthetic bacteria Rhodopseudomonas sp. KH4, which was isolated from a stream in Anyang, Kyonggi-Do. When Cd (100 mg/L) and Cu (100 mg/L) were added to EPS (1.0 g/L) in the optimal condition (Cd; pH 8, Cu; pH 5, $40^{\circ}C$), 84.2 mg/L of Cd and 70.0 mg/L of Cu were adsorbed within 30 min and 10 min, respectively. When 100 mg/L of Cd and Cu were present as mixture, 16.8 mg/L of Cd and 48.7 mg/L of Cu were adsorbed at $25^{\circ}C$, pH 5. The maximum adsorption capacity determined by fitting Langmuir isotherms model was suitable for describing the biosorption of Cd (76.9 mg/g) and Cu (67.1 mg/g) by EPS. The neutral monosaccharide in the EPS determined by GC consisted of arabinose (2.4%), glucose (7.1%) and mannose (90.5%).

본 연구에서는 경기도 안양에 있는 하천에서 분리한 홍색 비황 광합성 세균Rhodopseudomonas sp. KH4에서 생성된 extracellular polysaccharide (EPS)의 중금속 흡착특성에 대해 연구하였다. 100 mg/L의 Cd과 Cu의 최적 흡착조건(온도$40^{\circ}C$ Cd; pH 8, Cu; pH 5)에서 1.0 g/L의 EPS를 첨가하였을 때, Cd의 경우 30분 동안 842 mg/L, Cu의 경우 10분 동안 70.0 mg/L가 흡착되었다. 또한 Cd과 Cu가 각각 100 mg/L씩 공존되어 있는 경우, pH 5, $25^{\circ}C$에서 EPS 1.0 g/L 첨가하였을 때 Cd과 Cu가 각각 16.8 mg/L, 48.7 mg/L가 흡착되었다. 또한 Langmuir 등은 흡착식으로 부터 EPS 1.0 g/L, pH 5, $25^{\circ}C$에서 Cd과 Cu의 흡착량은 각각 76.9 mg/L, 67.1 mg/L로 실제 경험치와 큰 차이를 보이지 않았다. 에탄올 침전법으로 정제된 KH4 strain으로부터 생성된 EPS는 gas-liquid chromatography (GLC) 분석에 의한 중성당 분석 결과, arabinose, glucose, mannose가 각각 2.4%, 7.1%, 90.5%로 mannose가 대부분을 구성하였다.

Keywords

References

  1. 배우철, 장승욱, 정욱진, 정병철. 1997. 미생물을 이용한 Cd 제거. 명지대학교 자연과학논문집 15, 84-90
  2. 백기현, 김동호, 최돈하. 1997. 수피에 의한 중금속 흡착시 경금속의 영향과 중금속간의 흡착 경쟁. 한국환경농학회지 16, 115-118
  3. 서정호, 오상진, 박영식, 김동석, 송승구. 1997. Saccharomyces cerevisiae와 Aureobasidium pullulans의 납 흡착. 대한환경공학회지 19, 745-754
  4. 안갑환, 서근학. 1995. Saccharomyces uvarum에 의한 중금속 생체흡착에 관한 연구. 한국환경학회지. 4, 527-534
  5. 이종은. 1995. 천연 고령토의 폐수 중 납 흡착에 관한 연구. 한국환경위생학회지 21, 77-86
  6. 이희무, 이장순, 이중복. 2001. 토양에서 분리된 아연내성균의 아연흡착에 관한 연구. 환경연구 논문집 1, 55-66
  7. Bender, H., S. Rodriguez, U. Ekanemesang, and P. Phillips. 1994. Characterisation of metal-binding bioflocculants produced by the cyanobacteriol component of mixed Microbiol mat. Appl. Environ. Microbiol. 60, 2311-2315
  8. Blumenkrantz, N. and G. Asboe-Hansen. 1973. New method for quantitative determination of uronic acid. Anal. Biochem. 54, 484-489 https://doi.org/10.1016/0003-2697(73)90377-1
  9. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  10. Brady, J.M. and M. Tobin. 1995. Binding of hard and soft metal ions to Rhizopus arrhizus biomass. Enzyme and Microbiol Technol. 17, 791-796 https://doi.org/10.1016/0141-0229(95)00142-R
  11. Dubois, M., A.K. Gilles, J.K. Hamilton, P.A. Rebers, and F. Smith. 1956. Calorimetric method for determination of sugar related substances. Anal. Chem. 28, 350-356 https://doi.org/10.1021/ac60111a017
  12. Fourest, E. and J.C. Roux. 1992. Heavy metal biosorption by fungal mycelial by-products; mechanisms and influence of pH. Microbiol. Biotechnol. 37, 399-403 https://doi.org/10.1007/BF00211001
  13. Geesey, G.G., L. Jang, J.G. Jolley, M.R. Hankins, T. Iwaoka, and P.R. Griffiths. 1989. Binding of metal ions by extracellular polymers of biofilm bacteria. Water Sci. Technol. 20, 161-166
  14. Jones, T.M. and P.O. Albersheim. 1972. A gas chromatographic method for the determination of aldose and uremic acid constituents of plant cell wall polysaccharide. Plant Physiol. 49, 926-936 https://doi.org/10.1104/pp.49.6.926
  15. Kim, S.Y., J.H. Kim, C.I. Kim, and O.K. Oh. 1996. Metal adsorption of the polysaccharide produced. from Methylobacterium organophilum. Biotechnol. Lett. 18, 1161-1164 https://doi.org/10.1007/BF00128585
  16. Kaplan, D., D. Christiaen, and S.M. Arad. 1988. Binding of heavy metals by algal polysaccharides. p. 179-187. In T. Stadler, J. Mollion, M.C. Verdus, Y. Karamanos, H. Morvan, D. Christiaen (Eds.), Algal Biotechnology, Elsevier Applied Sciences
  17. Kratochvil, D., E. Fourest, and B. Volesky. 1995. Biosorption of copper by Sargassum fluitans biomass in fixed bed column. Biotech. Lett. 17, 777-782 https://doi.org/10.1007/BF00130368
  18. Lee, J.H., I.Y. Lee, K.K. Kim, and Y.H. Park. 1999. Optimal pH control of batch processes for production of curdlan by Agrobacterium species. J. Industrial Microbiol. Biotechnol. 23, 143-148 https://doi.org/10.1038/sj.jim.2900714
  19. Manahan, S. E. 1990. Environmental chemistry, p. 146-157. Lewis publishers. Inc
  20. Mattuschka, B. and G. Straube. 1993. Biosorption of metals by a waste biomass. J. Chem. Tech. Biotechnol. 58, 57-63
  21. Norberg, A.B. and S. O. Enfors. 1982. production of Extracellular polysaccharide by zoogloea ramigera. Appl. Environ. Microbiol. 44, 1231-1237
  22. Ozdemir, G., N. Ceyhan, and E. Manav. 2005. Utilization of an exopolysaccharide produced by Chryseomonas luteola TEM05 in alginate bead for adsorption of cadmium and cobalt ions. Biores. Technol. 96, 1677-1682 https://doi.org/10.1016/j.biortech.2004.12.031
  23. Puranik, P. and K.M. Paknikar. 1999. Influence of co-cations on biosorption of lead and zinc-a comparative evaluation in binary and multimetal systems. Biores. Technol. 70, 269-276 https://doi.org/10.1016/S0960-8524(99)00037-1
  24. Sabadell, J.E. and R.J. Krack. 1975. Adsorption of heavy metals from wastewater and sludge on forest residuals and forest produce wastes, 2th ed., P. 234-240. on Complete Water Reuse, Chicago
  25. Painter, T.J. 1983. Algal polysaccharides, p. 195-285. In Aspinal, G (Ed.), Polysaccharides. Academic Press, Orlando, Florida, USA
  26. Paulsen, B.S., T. As1aksen, C.S. Freire-Nordi, and A.A.H. Vieira. 1998. Extracellular polysaccharide from Ankistrodesmus densus (Chlorophyceae). J. Phycol. 34, 638-641 https://doi.org/10.1046/j.1529-8817.1998.340638.x
  27. Sag, Y. and T. Kutsal. 1995. Biosorption of heavy metal by zoogloea ramigera: use of adsorption isotherms and a comparison of biosorption characteristics. Biochem. Eng. J. 60, 181-188 https://doi.org/10.1016/0923-0467(95)03014-X
  28. Salehizadeh, H. and S.A. Shojaosadati. 2001. Extracellular biopolymer flocculants: recent trends and biotechnological importance. J. Biotechnol. Adv. 19, 371-385 https://doi.org/10.1016/S0734-9750(01)00071-4
  29. Sampedro, M.A., A. Blanco, M.J. Liama, and J.L. Serra. 1995. Sorption of heavy metals to Phonnidium laminosum biomass. Biotechnol. Appl. Biochem. 22, 355-366
  30. Volesky, B. and Z.R. Holan. 1995. Advances in biosorption of metals: selection of biomass types. Biotechnol. Prog. 11, 235-250 https://doi.org/10.1021/bp00033a001