DOI QR코드

DOI QR Code

저온 작동 박막 고체산화물 연료전지

Fuel Cells for Intermediate Temperature Operations

  • Shim, Joon-H. (Department of Mechanical Engineering, Stanford University) ;
  • Cha, Suk-Won (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Gur, Turgut M. (Department of Mechanical Engineering, Stanford University) ;
  • Prinz Fritz B. (Department of Mechanical Engineering, Stanford University)
  • 발행 : 2006.12.31

초록

Recently, a new type of solid oxide fuel cells has been developed employing extremely thin oxide electrolyte. These fuel cells are expected to operate at significantly reduced temperature compared to conventional solid oxide fuel cells. Accordingly, they may resolve the stability and material selection issues of high temperature fuel cells. Furthermore, they may eliminate the limitations of polymer membrane fuel cells whose operation temperature is under $100^{\circ}C$. In this paper, we review the electrolytes for intermediate temperature operation. Then, we discuss the current development of thin film solid oxide fuel cells that possibly operated at low temperatures.

키워드

참고문헌

  1. R. O'Hayre, S. W. Cha, W. Colella, and F. B. Prinz, 'Fuel Cell Fundamentals,' pp. 112, John Wiley and Sons, New York, 2006
  2. S. J. Paddison, 'Proton Conduction Mechanisms at Low Degrees of Hydration in Sulfonic Acid-Based Polymer Electrolyte Membranes,' Ann. Rev. Mat. Res., 33 289-319 (2003) https://doi.org/10.1146/annurev.matsci.33.022702.155102
  3. K. D. Kreuer, 'On the Development of Proton Conducting Polymer Membranes for Hydrogen and Methanol Fuel Cells,' J. Membr. Sci., 185 [1] 29-39 (2001) https://doi.org/10.1016/S0376-7388(00)00632-3
  4. Z. Weber and J. Newman, 'Transport in Polymer-Electrolyte Membranes. I. Physical Model,' J. Electrochem. Soc., 150 [7] A1008-15 (2003) https://doi.org/10.1149/1.1580822
  5. T. A. Zawodzinski, T. E. Springer, J. Davey, R. Jestel, C. Lopez, J. Valerio, and S. Gottesfeld, 'Comparative Study of Water Uptake by and Transport through Ionomeric Fuel Cell Membranes,' J. Electrochem. Soc., 140 [7] 1981-85 (1993) https://doi.org/10.1149/1.2220749
  6. T. A. Zawodzinski, C. Derouin, S. Radzinski, R. J. Sherman, V. T. Smith, T. E. Springer, and S. Gottesfeld, 'Water Uptake by and Transport through Nafion(R) 117 Membranes,' J. Electrochem. Soc., 140 [4] 1041-47 (1993) https://doi.org/10.1149/1.2056194
  7. R. K. A. M. Mallant, 'PEMFC Systems: The Need For High Temperature Polymers as a Consequence of PEMFC Water and Heat Management,' J. Power Sources, 118 [1-2] 424-29 (2003) https://doi.org/10.1016/S0378-7753(03)00054-5
  8. C. Yang, P. Costamagna, S. Srinivasan, J. Benziger, and A. B. Bocarsly, 'Approaches and Technical Challenges to High Temperature Operation of Proton Exchange Membrane Fuel Cells,' J. Power Sources, 103 [1] 1-9 (2001) https://doi.org/10.1016/S0378-7753(01)00812-6
  9. N. M. Markovic, T. J. Schmidt, V. Stamenkovic, and P. N. Ross, 'Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review,' Fuel Cells, 1 [2] 105-16 (2001) https://doi.org/10.1002/1615-6854(200107)1:2<105::AID-FUCE105>3.0.CO;2-9
  10. R. Ianniello, V. M. Schmidt, U. Stimming, J. Stumper, and A. Wallau, 'CO Adsorption and Oxidation on Pt and Pt-Ru Alloys: Dependence on Substrate Composition,' Electrochim. Acta, 39 [11-12] 1863-69 (1994) https://doi.org/10.1016/0013-4686(94)85176-X
  11. K. T. Adjemian, S. J. Lee, S. Srinivasan, J. Benziger, and A. B. Bocarsly, 'Silicon Oxide Nafion Composite Membranes for Proton-Exchange Membrane Fuel Cell Ooperation at 80- $140^{\circ}C$,' J. Electrochem. Soc., 149 [3] A256-61 (2002) https://doi.org/10.1149/1.1445431
  12. K. T. Adjemian, R. Dominey, L. Krishnan, H. Ota, P. Majsztrik, T. Zhang, J. Mann, B. Kirby, L. Gatto, M. Velo- Simpson, J. Leahy, S. Srimvasan, J. B. Benziger, and A. B. Bocarsly, 'Function and Characterization of Metal Oxide- Nafion Composite Membranes for Elevated-Temperature $H_2/O_2$ PEM Fuel Cells,' Chem. Mat., 18 [9] 2238-48 (2006) https://doi.org/10.1021/cm051781b
  13. Honma, H. Nakajima, O. Nishikawa, T. Sugimoto, and S. Nomura, 'Family of High-Temperature Polymer-Electrolyte Membranes Synthesized from Amphiphilic Nanostructured Macromolecules,' J. Electrochem. Soc., 150 [5] A616-9 (2003) https://doi.org/10.1149/1.1566018
  14. R. Bouchet, S. Miller, M. Duclot, and J. L. Souquet, 'A Thermodynamic Approach to Proton Conductivity in Acid- Doped Polybenzimidazole,' Solid State Ionics, 145 [1-4] 69-78 (2001) https://doi.org/10.1016/S0167-2738(01)00910-9
  15. H. Pu, W. H. Meyer, and G. Wegner, 'Proton Transport in Polybenzimidazole Blended with $H_3PO_4\; or\; H_2SO_4$,' J. Polym. Sci., 40 [7] 663-69 (2002) https://doi.org/10.1002/polb.10132
  16. J. J. Fontanella, M. C. Wintersgill, R. S. Chen, Y. Wu, and S. G. Greenbaum, 'Charge Transport and Water Molecular Motion in Variable Molecular Weight NAFION$^{\circledR}$ Membranes: High Pressure Electrical Conductivity and NMR,' Electrochim. Acta, 40 [13-14] 2321-26 (1995) https://doi.org/10.1016/0013-4686(95)00186-I
  17. J. J. Fontanella, C. A. Edmondson, M. C. Wintersgill, Y. Wu, and S. G. Greenbaum, 'High-Pressure Electrical Conductivity and NMR Studies in Variable Equivalent Weight NAFION$^{\circledR}$ Membranes,' Macromolecules, 29 [14] 4944-51 (1996) https://doi.org/10.1021/ma9600926
  18. R. H. He, Q. F. Li, G. Xiao, and N. J. Bjerrum, 'Proton Conductivity of Phosphoric Acid Doped Polybenzimidazole and Its Composites with Inorganic Proton Conductors,' J. Membr. Sci., 226 [1-2] 169-84 (2003) https://doi.org/10.1016/S0376-7388(03)00190-X
  19. R. He, Q. Li, J. Gao, J. O. Jensen, and N. J. Bjerrum, 'The CO Poisoning Effect in PEMFCs Operational at Temper atures up to 200$^{\circ}$C,' J. Electrochem. Soc., 150 [12] A1599-1605 (2003) https://doi.org/10.1149/1.1619984
  20. H. F. Oetjen, V. M. Schmidt, U. Stimming, and F. Trila, 'Performance Data of a Proton Exchange Membrane Fuel Cell Using $H_2/CO$ as Fuel Gas,' J. Electrochem. Soc., 143 [12] 3838-42 (1996) https://doi.org/10.1149/1.1837305
  21. R. He, Q. Li, J. O. Jensen, and N. J. Bjerrum, 'PBI-Based Polymer Membranes for High Temperature Fuel Cells- Preparation, Characterization and Fuel Cell Demonstration,' Fuel Cells, 4 [3] 147-59 (2004) https://doi.org/10.1002/fuce.200400020
  22. Q. Li, R. He, R. W. Berg, H. A. Hjuler, and N. J. Bjerrum, 'Water Uptake and Acid Doping of Polybenzimidazoles as Electrolyte Membranes for Fuel Cells,' Solid State Ionics, 168 [1-2] 177-85 (2004) https://doi.org/10.1016/j.ssi.2004.01.010
  23. J. T. Wang, R. F. Savinell, J. Wainright, M. Litt, and H. Yu, '$H_2/O_2$ Fuel Cell Using Acid Doped Polybenzimidazole as Polymer Electrolyte,' Electrochim. Acta, 41 [2] 193-97 (1996) https://doi.org/10.1016/0013-4686(95)00313-4
  24. Savadogo and B. Xing, 'Hydrogen/Oxygen Polymer Electrolyte Membrane Fuel Cell(PEMFC) Based on Acid-Doped Polybenzimidazole(PBI),' J. New Mat. Electrochem. Sys., 3 [4] 343-47 (2000)
  25. S. M. Haile, D. A. Boysen, C. R. I. Chisholm, and R. B. Merle, 'Solid Acids as Fuel Cell Electrolytes,' Nature, 410 [6831] 910-13 (2001) https://doi.org/10.1038/35073536
  26. D. A. Boysen, T. Uda, C. R. I. Chisholm, and S. M. Haile, 'High-Performance Solid Acid Fuel Cells Through Humidity Stabilization,' Science, 303 [5654] 68-70 (2004) https://doi.org/10.1126/science.1090920
  27. C. R. I. Chisholm, Y. H. Jang, S. M. Haile, and W. A. Goddard, 'Superprotonic Phase Transition of $CsHSO_4$: A Molecular Dynamics Simulation Study,' Phy. Rev. B, 72 [13] 134103 (2005) https://doi.org/10.1103/PhysRevB.72.134103
  28. K. D. Kreuer, 'On the Development of Proton Conducting Materials for Technological Applications,' Solid State Ionics, 94 [1-4] 1-15 (1997) https://doi.org/10.1016/S0167-2738(96)00601-7
  29. R. B. Merle, C. R. I. Chisholm, D. A. Boysen, and S. M. Haile, 'Instability of Sulfate and Selenate Solid Acids in Fuel Cell Environments,' Energy and Fuels, 17 [1] 210-15 (2003) https://doi.org/10.1021/ef0201174
  30. D. A. Boysen, C. R. I. Chisholm, S. M. Haile, and S. R. Narayanan, 'Polymer Solid Acid Composite Membranes for Fuel-Cell Applications,' J. Electrochem. Soc., 147 [10] 3610- 13 (2000) https://doi.org/10.1149/1.1393947
  31. N. P. Brandon, S. Skinner, and B. C. H. Steele, 'Recent Advances in Materials for Fuel Cells,' Annu. Rev. Mater. Res., 33 183-213 (2003) https://doi.org/10.1146/annurev.matsci.33.022802.094122
  32. N. Taniguchi, K. Hatoh, J. Niikura, T. Gamo, and H. Iwahara, 'Proton Conductive Properties of Gadolinium-Doped Barium Cerates at High Temperatures,' Solid State Ionics, 53-56 [2] 998-1003 (1992) https://doi.org/10.1016/0167-2738(92)90283-U
  33. S. Iguchi, 'New Leads for Future FC Vehicles: Intermediate Temperature Fuel Cell and New Hydrogen Storage Materials,' Fuel Cell Seminar, San Antonio, Texas, Nov 2004
  34. H. Huang, M. Nakamura, P. Su, R. Fasching, Y. Saito, and F. B. Prinz, 'MEMS Fabrication and Performances of Nano- Thin Solid Oxide Fuel Cell,' 208th Meeting of The Electrochemical Society, Los Angeles, California, October 2005
  35. J. H. Shim, S. W. Cha, R. O'Hayre, T. M. Gur, and F. B. Prinz, 'Proton Transport Membranes for Fuel Cells: Polymeric Versus Dense Ceramic,' 210th Meeting of The Electrochemical Society, Cancun, Mexico, Oct 2006
  36. F. B. Prinz, 'Thin Film Fuel Cells,' Gordon Research Conferences, Smithfield, RI, Jul 2006
  37. T. Uda, P. Babilo, and S. M. Haile, 'Thermodynamic Analysis and Conductivity of Yttrium Doped Barium Zirconate,' 207th Meeting of the Electrochemical Society, Quebec, Canada 2005
  38. K. D. Kreuer, 'Proton-Conducting Oxides,' Ann. Rev. Mat. Res., 33 333-59 (2003) https://doi.org/10.1146/annurev.matsci.33.022802.091825
  39. H. Taherparvara, J. A. Kilnera, R. T. Baker, and M. Sahibzada, 'Effect of Humidification at Anode and Cathode in Proton-Conducting SOFCs,' Solid State Ionics, 162 297- 303 (2003) https://doi.org/10.1016/S0167-2738(03)00222-4
  40. J. Cheng, K. Crabb, R. Pornprasertsuk, H. Huang, Y. Saito, and F. B. Prinz, 'Ion Irradiation Effects on Yttria-Stabilized Zirconia Conductivity,' Materials Research Society Symposium, Boston, USA, Nov 2006
  41. R. Pornprasertsuk, J. Cheng, Y. Saito, T. M. Gur, and F. B. Prinz, 'Quantum Simulation and Isotope Exchange Depth Profiling Studies of Irradiated Yttria Stabilized Zirconia,' 208th Meeting of The Electrochemical Society, Los Angeles, USA, Oct 2005

피인용 문헌

  1. Effects of Duty Cycle and Pulse Frequency on the Microstructure and Mechanical Properties of TiAlN Coatings vol.51, pp.5, 2014, https://doi.org/10.4191/kcers.2014.51.5.447