3',5'-Cyclic Adenosine Monophosphate (cAMP) as a Signal and a Regulatory Compound in Bacterial Cells

원핵세포에서 신호물질 및 조절인자로서의 3',5'-Cyclic Adenosine Monophosphate의 역할

  • Chun, Se-Jin (Department of Environment Science, Hankuk University of Foreign Studies) ;
  • Seok, Young-Jae (Laboratory of Macromolecular Interactions, School of Biological Science, Seoul National University) ;
  • Lee, Kyu-Ho (Department of Environment Science, Hankuk University of Foreign Studies)
  • 천세진 (한국외국어대학교 자연과학대학 환경학과) ;
  • 석영재 (서울대학교 자연과학대학 생명과학부) ;
  • 이규호 (한국외국어대학교 자연과학대학 환경학과)
  • Published : 2006.12.28

Abstract

3',5'-cyclic adenosine monophosphate (cAMP) is an important molecule, which mediates diverse cellular processes. For example, it is involved in regulation of sugar uptake/catabolism, DNA replication, cell division, and motility in various acterial species. In addition, cAMP is one of the critical regulators for syntheses of virulence factors in many pathogenic bacteria. It is believed that cAMP acts as a signal for environmental changes as well as a regulatory factor for gene expressions. Therefore, intracellular concentration of cAMP is finely modulated by according to its rates of synthesis (by adenylate cyclase), excretion, and degradation (by cAMP phosphodiesterase). In the present review, we discuss the bacterial physiological characteristics governed by CAMP and the molecular mechanisms for gene regulation by cAMP. Furthermore, the effect of cAMP on phosphotransferase system is addressed.

Keywords

References

  1. Amin, N. and A. Peterkofsky. 1995. A dual mechanism for regulating cAMP levels in Escherichia coli. J. Biol. Chem. 270: 11803-11805 https://doi.org/10.1074/jbc.270.20.11803
  2. Bang, Y. B., S. E. Lee, J. H. Rhee, and S. H. Choi. 1999. Evidence that expression of the Vibrio vulnificus hemolysin gene is dependent on cyclic AMP and cyclic AMP receptor protein. J. Bacteriol. 181: 7639-7642
  3. Bartlett, D. H., B. B. Franz, and P. Matsumura. 1988. Flagellar transcriptional activators FlbB and Flal: gene sequences and 5'-consensus sequences of operons under flaB and flal control. J. Bacteriol. 170: 1575-1581
  4. Botsford, J. L. and J. G. Harman. 1992. cyclic AMP in prokaryotes. Microbiol. Rev. 56: 100-122
  5. Bruckner, R. and F. Titgemeyer. 2002. Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol. Lett. 209: 141-148
  6. Busby, S., and R. H. Ebright. 1999. Transcription activation by catabolite activator protein (CAP). J. Mol. Biol. 293: 199-213 https://doi.org/10.1006/jmbi.1999.3161
  7. Caldwell, D. R. 1995. Genetics. pp. 248-250. In Microbial physiology and metabolism. Wm. C. Brown Publishers, U.S.A
  8. Charbonneau, H. 1990. Structure, regulation, and drug action. pp. 267-296. In Beavo, J., and M. D. Houslay. (ed.), Cyclic nucleotide phosphodiesterases. J. Wiley and Sons Ltd. Chichester
  9. Choi, H. K., N. Y. Park, D. Kim, H. J. Chung, S. Ryu, and S. H. Choi. 2002. Promoter analysis and regulatory characteristics of vvhBA encoding cytolytic hemolysin of Vibrio vulnificus. J. Biol. Chem. 277: 47292-47299 https://doi.org/10.1074/jbc.M206893200
  10. Dawes, I. W. and I. W. Sutherland. 1992. Regulation, pp. 215-218. In Microbioal physiology. (2ed.), Blackwell Scientific publications, London
  11. de Lorenzo, V., M. Herrero, F. Giovannini, and J. B. Neilands. 1988. Fur (ferric uptake regulon) protein and CAP (catabolite activator protein) modulate transcription of fur gene in Escherichia coli. Eur. J. Biochem. 173: 537-546 https://doi.org/10.1111/j.1432-1033.1988.tb14032.x
  12. Fox, D. K., K. A. Presper, S. Adhya, S. Roseman, and S. Garges. 1992. Evidence for two promoters upstream of the pts operon: Regulation by the cAMP receptor protein regulatory complex. Proc. Natl. Acad. Sci. U.S.A. 89: 7056-7059
  13. Friden, P., T. Newman, and M. Freundlich. 1982. Nucleotie sequence of the ilvB promoter regulatory region: a biosynthetic operon controlled by attenuation and cyclic AMP. Proc. Natl. Acad. Sci. U.S.A. 79: 6156-6160
  14. Gemmill, R. M., M. Tripp, S. B. Friedman, and J. M. Carvo. 1984. Promoter mutation causing catabolite repression of the Salmonella typhimurium leucine operon. J. Bacteriol. 158: 948-953
  15. Gibert. I., V. Villegas, and J. Barbe. 1989. Expression of heat labile enterotoxin is under cyclic AMP control in Escherichia coli. Curr. Microbiol. 20: 83-90 https://doi.org/10.1007/BF02092878
  16. Gollnick, P. and C. Yanofsky. 1990. tRNATrp tanslation of leader peptide codon 12 and other factors that regulate expression of the tryptophanase operon. J. Bacteriol. 159: 832-836
  17. Harman, J. G. 2001. Allosteric regulation of the cAMP receptor protein. Biochem. Biophys. Acta 1547: 1-17
  18. Hughes, P., A. Landouls, and M. Kohiyama. 1988. A novel role for cAMP in control of the activity of the E. coli chromosome replication initiator protein, DnaA. Cell 55: 343-350 https://doi.org/10.1016/0092-8674(88)90057-8
  19. Imamura, R., K. Yamanaka, T. Ogura, S. Hiraga, N. Fujita, A. Ishihama, and H. Niki. 1996. Identification of the cpdA gene encoding cyclic 3',5'-adenosine monophosphate phosphodiesterase in Escherichia coli. J. Biol. Chem. 271: 25423-25429 https://doi.org/10.1074/jbc.271.41.25423
  20. Irwin, N. and M. Ptashne. 1987. Mutants of the catabolite activator protein of Escherichia coli that are specifically deficient in the gene-activation function. Proc. Natl. Acad. Sci. U.S.A. 84: 8315-8319
  21. Jaffe, A. and R. D'an. 1986. SOS-independent coupling between DNA replication and cell division in Escherichia coli. J. Bacteriol. 165: 66-67
  22. Jeong, J.-Y., Y.-J. Kim, N. Cho, D. Shin, T.-W. Nam, S. Ryu, S., and Y.-J. Seok 2004. Expression of ptsG encoding the major glucose transporter is regulated by ArcA in Escherichia coli. J. Biol. Chem. 279: 38513-38518 https://doi.org/10.1074/jbc.M406667200
  23. Jerlstrom, P. G., D. A. Bezjak, M. P. Jennings, and I. R. Beacham. 1987. Regulation of Escherichia coli L-asparaginasell and L-aspartase by the fnr gene. FEMS Microbiol. Lett. 41: 127-130
  24. Kawamukai, M., J. Kishimoto, R. Utsumi, M. Himeno, T. Komano, and H. Aiba. 1985. Negative regulation of adenylate cyclase gene (cya) expression by cyclic AMP-cyclic AMP receptor protein in Escherichia coli: Studies with cya-lac protein and operon fusion plasmids. J. Bacteriol. 164: 872-877
  25. Kimata, K., H. Takahashi, T. Inada, P. Postma, and H. Aira. 1997. cAMP receptor protein-cAMP plays a crucial role in glucose-lactose diauxie by activating the major glucose transporter gene in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 94: 12914-12919
  26. Koo, B.-M., M.-J. Yoon, C.-R. Lee, T.-W. Nam, Y-J. Choe, H. Jaffe, A. Peterkofsky, and Y.-J. Seok. 2004. A novel fermentation/respiration switch protein regulated by enzyme IIAGlc in Escherichia coli. J. Biol. Chem. 279: 31613-31621 https://doi.org/10.1074/jbc.M405048200
  27. Krin, E., O. Sismeiro, A. Danchin, and P. N. Bertin. 2002. The regulation of the enzyme IIAGlCc expression conrols adenylate cyclase activity in Escherichia coli. Microbiology 148: 1553-1559
  28. Kutsukake, K., Y. Ohya, and T. Iino. 1990. Transcriptional analysis of the flagellar region of Salmonella typhimurium. J. Bacteriol. 172: 741-747
  29. Lopes, J. M., and R. P. Lawther. 1989. Physical identification of an internal promoter, ilvAp, in the distal portion of the ilvGMEDA operon. Gene 76: 255-269 https://doi.org/10.1016/0378-1119(89)90166-2
  30. Miller, J. H. 1992. A short course in bacterial genetics: A laboratory manual and handbook for Escherichia coli and related bacteria. Cold spring harbor laboratory. Cold spring harbor. NY
  31. Moat, A. G, J. W. Foster, and M. P. Spector. 2002. Regulation of prokaryotic gene expression. pp. 201-210. In Microbioal physiology (4ed.). John Wiley & Sons, Inc., publication
  32. Mori, K. and H. Aiba. 1985. Evidence for negative control of cya transcription by cAMP and cAMP receptor protein in intact Escherichia coli cells. J. Biol. Chem. 260: 14838-14843
  33. Mukhopadhyay, J., and R. Sur, and P. Parrack. 1999. Functional roles of the two cyclic AMP-dependent forms of cyclic AMP receptor protein from Escherichia coli. FEBS Lett. 453: 215-218 https://doi.org/10.1016/S0014-5793(99)00719-X
  34. Nam, T. W. 2004. Elucidation of glucose signaling mechanism through protein-protein interaction with Enzyme IICBglu in Escherichia coli. SNU Ph. D. thesis
  35. Neidhardt, F. C., J. L. Ingraham, and. M. Schaechter. 1990. Physiology of the bacterial cell: A molecular approach. pp. 357-361. Sinauer Associates, Inc. Publishers, Sinauer Associates, Inc., Sunderland
  36. Nieukoop, A. J., S. A. Boylan, and R. A. Bender. 1984. Regulation of hutVH operon expression by the catabolite gene activator protein-cAMP complex in Klebsiella aerogenes. J. Bacteriol. 159: 934-939
  37. Park, Y.-H., B.R. Lee, Y.-J. Seok, and A. Peterkofsky. 2006. In vitro reconstitution of catabolite repression in Escherichia coli. J. Biol. Chem. 281: 6448-6454 https://doi.org/10.1074/jbc.M512672200
  38. Peterkofsky, A., A. Reizer, J. Reizer, N. Gollop, P. P. Zhu, and N. Amin. 1993. Bacterial adenylyl cyclases. Progr. Nucl. Acids Res. Mol. Biol. 44: 31-65 https://doi.org/10.1016/S0079-6603(08)60216-0
  39. Plumbridge, J. 1998(a). Control of the expression of the manXYZ operon in Escherichia coli: Mlc is a negative regulator of the mannose PTS. Mol. Microbiol. 27: 369-80 https://doi.org/10.1046/j.1365-2958.1998.00685.x
  40. Plumbridge, J. 1998(b). Expression of ptsG, the gene for the major PTS transporter in Escherichia coli, is repressed by Mlc and induced by growth on glucose. Mol. Microbiol. 29: 1053-1063 https://doi.org/10.1046/j.1365-2958.1998.00991.x
  41. Plumbridge, J. and A. Kolb. 1998. DNA bending and expression of the divergent nagE-B operons. Nucleic Acids Res. 26: 1254-1260 https://doi.org/10.1093/nar/26.5.1254
  42. Postma, P. W., J. W. Lengeler, and G. R. Jacobson. 1996. Phosphoenolpyruvate:carbohydrate phosphotransferase system. pp. 1149-1174. In Neidhardt, F. C. (2ed.). Escherichia coli and Salmonella: Cellular and molecular biology. ASM press, Washington, D.C
  43. Prusiner, S., R. E. Miller, and R. C. Valentine. 1977. Adenosine 3',5'-cyclic monophosphate control of the enzymes of glutamine metabolism in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 69: 2922-2926
  44. Reddy, P. S., A. Peterkofsky, and K. McKenney. 1985. Translational efficiency of the E. coli adenylate cyclase gene: mutating the UUG initiation codon to GUG or AUG results in increased gene expression. Proc. Natl. Acad. Sci. U.S.A. 82: 5656-5660
  45. Reitzer, L. J., and B. Magasanik. 1985. Expression of glnA in Escherichia coli is regulated at tandem promotors. Proc. Natl. Acad. Sci. U.S.A. 85: 4138-4142
  46. Roy, A., C. Haziza, and A. Danchin. 1983. Regulation of adenylate cyclase synthesis in Escherichia coli: nucleotide sequence of the control region. EMBO J. 2: 791-797
  47. Roy, A., P. Glaser, and A. Danchin. 1988. Aspects of the regulation of adenylate cyclase synthesis by Escherichia coli K12. J. Gen. Microbiol. 134: 359-363
  48. Saier, M. H., Jr. 1989. Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenol pyruvate sugar phosphotransferase system. Microbiol. Rev. 53: 109-120
  49. Saier, M. H., Jr. 1996. Cyclic AMP-independent catabolite repression in bacteria. FEMS Micriobiol. Lett. 138: 97-103 https://doi.org/10.1111/j.1574-6968.1996.tb08141.x
  50. Saier, M. H., Jr., T. M. Ramseier, and J. Reizer. Regulation of carbon utilization. pp. 1326-1356. In Neidhardt, F. C. (2ed.). Escherichia coli and Salmonella: Cellular and molecular biology. ASM press, Washington, D.C
  51. Seoh, H. K. and P. C. Tai. 1999. Catabolite repression of secB expression is positively controlled by cyclic AMP (cAMP) receptor protein-cAMP complexes at the transcriptional level. J. Bacteriol. 181: 1892-1899
  52. Skorupski, K. and R. K. Taylor. 1997. Cyclic AMP and its receptor protein negatively regulate the coordinate expression of cholera toxin and toxin-coregulated pilus in Vibio cholerae. Proc. Natl. Acad. Sci. U.S.A. 94: 265-270
  53. Stern, M. J., C. F. Higgins, and G. F.-L. Ames. 1984. Isolation and characterization of lac fusions of two nitrogen-regulated promotors. Mol. Gen. Genet. 195: 219-227 https://doi.org/10.1007/BF00332750
  54. Tchieu, J., V. Norris, J. Edwards, and M.H. Saier, Jr. 2001. The complete phosphotransferase system in Escherichia coli. J. Mol. Microbiol. Biotechnol. 3: 329-346
  55. Wagner, R. 2000. Transcription regulation in prokaryotes. pp. 199-226. Oxfore University press
  56. White, D. 2000. The physiology and biochemistry of prokaryotes (2ed.). pp. 407-410. Oxford University Press NY
  57. Yokota, T. and S. Kuwahara. 1974. Adenosine 3',5'-cyclic monophosphate- deficient mutants of Vibrio cholerae. J. Bacteriol. 120: 106-113