Growth Characteristics of Acidithiobacillus thiooxidans in Different Sulfur Concentrations

황 농도에 따른 Acidithiobacillus thiooxidans의 생장 특성

  • Lee, Eun-Young (Department of Environmental Engineering, University of Suwon) ;
  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Ryu, Hee-Wook (Department of Chemical and Environmental Engineering, Soong Sil University)
  • 이은영 (수원대학교 환경공학과) ;
  • 조경숙 (이화여자대학교 환경공학과) ;
  • 류희욱 (숭실대학교 환경.화학공학과)
  • Published : 2006.12.28

Abstract

The growth characteristics of sulfur-oxidizing bacteria, Acidithiobacillus thiooxidans AZ11, MET, and TAS were investigated in mineral salt media supplemented with elemental sulfur of 1$\sim$50 g $L^{-1}$. The sulfur oxidation rates of A. thiooxidans. MET and TAS increased highly with increasing sulfur concentration up to 10 g L$^{-1}$, but the rates increased slowly in sulfur concentration over 10 g L$^{-1}$. A. thiooxidans AZ11 showed the parallel increase of sulfur oxidation rate until sulfur concentration increased up to 40 g L$^{-1}$. The maximum sulfur oxidation rates (V$_{max}$) of AZl1, MET and TAS were 1.88, 1.38 and 0.43 g S L$^{-1}$ d$^{-1}$, respectively. The maximum specific growth rates (${\mu}_{max}$) of AZ11, MET, and TAS were 0.33 d$^{-1}$, 0.30 d$^{-1}$ and 0.45 d$^{-1}$, respectively. Although MET and TAS couldn't grow at sulfate concentration of 40 g L$^{-1}$, AZ11 could grow in the presence of 58 g L$^{-1}$ sulfate, the final oxidation product of elemental sulfur.

Keywords

References

  1. Atlas, R. M. and R. Bartha. 1993. Microbial ecology - Fundamentals and application - pp. 323-599. 3rd ed. The Benjamin/Cummings publishing company, USA
  2. Brock, T. D., D. W. Smith, and M. T. Madigan. 1984. Biology of microorganisms, pp. 209; 260; 433-434; 712-714. 4th ed. Prentice-Hall, Englewood Cliffs, New Jersey, USA
  3. Larkin, J. M. 1980. Isolation of Thiotrix in pure culture and observation of a filamentous epiphyte on Thiotrix. Curr. Microbiol. 4: 144-158
  4. Nelson, D. C. and H. W. Jannasch. 1983. Chemoautotrophic growth of a marine Beggiatoain sulfide-gradient cultures. Arch. Microbiol. 136: 262-269 https://doi.org/10.1007/BF00425214
  5. Zhang, L., M. Hirai, and M. Shoda. 1991. Removal characteristics of dimethyl sulfide, methanethiol and hydrogen sulfide by Hyphomicrobium sp. 155 isolated from peat biofilter. J. Ferment. Bioeng. 72: 392-396 https://doi.org/10.1016/0922-338X(91)90093-V
  6. Steinmetz, M. A. and U. Fisher. 1982. Cytochromes of the green sulfur bacterium Chlorobium vibrioforme f. thiosulfatophilum. Purification, characterization and sulfur metabolism. Arch. Microbiol. 131: 19-26 https://doi.org/10.1007/BF00451493
  7. Gray, G. O. and J. G. Knaff. 1982. The role of a cytochrome c-552-cytochrome c complex in the oxidation sulfide in Chromatium vinosum. Biochim. Biophys. Acta 680: 290-296 https://doi.org/10.1016/0005-2728(82)90141-4
  8. Then, J. and H. G. Truper. 1983. Sulfide oxidation in Ectothiorhodospira abdelmalekii. Evidence for the catalytic role of cytochrome c-551. Arch. Microbiol. 135: 254-258 https://doi.org/10.1007/BF00413477
  9. Brume, D. C. and H. G. Truper. 1986. Noncyclic electron transport in chromatophores from photolithotrophically grown Rhodobacter sulfidophilis. Arch. Microbiol. 145: 295-301 https://doi.org/10.1007/BF00443662
  10. Chung, Y. C., C. Huang, and C. P. Tseng. 1996. Biodegradation of hydrogen sulfide by a laboratory-scale immobilized Pseudomonas putida CH11 biofilter. Biotechnol. Prog. 12: 773-778 https://doi.org/10.1021/bp960058a
  11. Cho, K. S., M. Hirai, and M. Shoda. 1992. Degradation of hydrogen sulfide by Xanthomonas sp. strain DY44 isolated from peat. Appl. Environ. Microbiol. 58: 1183-1189
  12. Lee, E. Y., N. Y. Lee, K. S. Cho, and H. W. Ryu. 2006. Removal of hydrogen sulfide by sulfate-resistant Acidithiobacillus thiooxidans AZ11 J. Biosci. Bioeng. 101: 309-314 https://doi.org/10.1263/jbb.101.309
  13. Ryu, H.W., H. S. Moon, E. Y. Lee, K. S. Cho, and H. Choi. 2003. Bioremediation and biodegradation-leaching characteristics of heavy metals from sewage sludge by Acidithiobacillus thiooxidans MET, J. Environ. Qual. 32: 751-759
  14. Lee, E. Y., K. S. Cho, and H. W. Ryu. 2005, Simultaneous removal of $H_{2}S$ and $NH_{3}$ in a biofilter inoculated with Acidithiobacillus thiooxidans TAS. J. Biosci. Bioeng. 99: 611-615 https://doi.org/10.1263/jbb.99.611
  15. Cadenhead, P. and K. L. Sublette. 1989. Oxidation of hydrogen sulfide by Thiobacilli, Biotechnol. and Bioeng. 35: 1150-1154 https://doi.org/10.1002/bit.260351111
  16. Shule, M. L. and F. Kargi. 1992. Bioprocess engineering - Basic comcepts -, pp. 61-67. Prentice Hall International Series, USA
  17. Finster, K., W. Liesack, and B. Thamdrup. 1998. Elemental Sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., an new anaerobic bacterium isolated from marine surface sediment, Appl. Environ. Microbiol. 64: 119-125