일본 제3기 해성 퇴적분지에서의 스멕타이트 매몰 속성작용

Burial Diagenesis of Smectite in the Tertiary Marine Basin, Japan

  • 발행 : 2006.12.31

초록

일본의 제3기 해성 퇴적분지 석유탐사 시추공에서 회수된 이질암에서 산출되는 일라이트-스멕타이트 혼합층 점토광물에 대하여 광물학적 및 화학적 연구를 수행하였다. X-선회절분석에 의하면 매몰심 도가 증가함에 따라 일라이트-스멕타이트 혼합층 광물을 구성하는 스멕타이트 성분층은 감소하고 일라이트 성분층은 증가한다. 또한 매몰심도 4,000 m에서 불규칙배열의 일라이트-스멕타이트 혼합층광물은 규칙배열(R=1)의 일라이트-스멕타이트 혼합층 광물로 변화한다. 이 매몰심도는 약 $100^{\circ}C$의 매몰온도를 지시하며 유기물분석 결과와 잘 일치되고 있다. 그러나 현재의 지온구배를 고려할 때 $100^{\circ}C$의 매몰온도는 3,000 m이다. 이와 같은 차이는 약 2,500 m에 존재하는 역단층에 의하여 일부 지층이 중복되고 더욱 매몰되었기 때문에 발생한 것으로 해석된다. 화학분석에 의하면 매몰심도가 증가함에 따라 일라이트-스멕타이트의 Si 성분은 감소하고 Al과 K성분은 증가한다. 이것은 일라이트-스멕타이트의 사면체층에서 Si를 Al이 교대함에 따라 사면체층에서 발생하는 전하량을 보완하기 위하여 사면체 층간에 K이 유입되는 것을 시사한다. 이 반응에 필요한 K은 K장석과 운모류에서 유입되었을 것으로 생각된다.

Mineralogical and chemical examinations were performed on interstratified illite-smectite (I-S) minerals that occur in the mudstones from a petroleum exploration well in the Tertiary marine basin, Japan. X-ray diffraction analysis shows that component layers of illite in the interstratified I-S increase with increasing burial depth while those of smectie decrease. In addition, the randomly (R=0) interstratified illite-smectite is changed into Rp1 ordered I-S at a depth of about 4,000 m, which corresponds to the result of organic analysis and indicates a burial temperature of about $100^{\circ}C$. However, the present geothermal gradient shows that the conversion of the random I-S to R=0 ordered I-S is likely to occur at 3,000 m. This discrepancy may be interpreted by the reverse fault at 2,500 m which resulted in a deeper burial of sediments up to 1,000 m. Chemical analysis also shows the compositional variation in I-S with increasing depth: a decrease in Si and an increases in Al and K, indicating that the substitution of Al for Si in tetrahedral sheets is compensated by the addition of K to interlayers. K may be derived from K-feldspar and micas, which is present in the mudstones.

키워드

참고문헌

  1. 손병국, 정태진, 오재호, 곽영훈 (1994) 의성지역 경상누층군의 열적진화와 속성작용, 한국석유지질학회지, 제2권, 제2호, 83-90
  2. Ahn, J.H. and Peacor, D.R. (1986) Transmission and analytical electron microscopy of the smectite-to-illite transition. Clays and Clay Minerals, 34, 165-179 https://doi.org/10.1346/CCMN.1986.0340207
  3. Altaner, S.P. and Ylagan, R.F. (1997) Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization. Clays and Clay Minerals, 45, 517-533 https://doi.org/10.1346/CCMN.1997.0450404
  4. Aronson, J.L. and Hower, J. (1976) Mechanism of burial metamorphism of argillaceous sediment: 2. Radiogenic argon evidence. Geplogical Society of America Bulletin, 87, 738-743 https://doi.org/10.1130/0016-7606(1976)87<738:MOBMOA>2.0.CO;2
  5. Burtner, R.L. and Warner, M.A. (1986) Relationship between illite/smectite diagenesis and hydrocarbon generation in lower Cretaceous Mowry and Skull Creek shales of the northern Rocky mountain area. Clays and Clay Minerals, 34, 390-402 https://doi.org/10.1346/CCMN.1986.0340406
  6. Eberl, D.D. (1993) Three zones for illite formation during burial diagenesis and metamorphism. Clays and Clay Minerals, 41, 26-37 https://doi.org/10.1346/CCMN.1993.0410103
  7. Espitalie, J., Deroo, G. and Marquis, F. (1985) La pyrolyse Rock Eval et ses applications. Revue de I'Institute Francais du Petrole, 40, 563-784 https://doi.org/10.2516/ogst:1985035
  8. Heroux, Y., Chagnon, A. and Bertrant, R. (1979) Compilation and correlation of major thermal maturation indicators. American Association of Petroleum Geologists Bulletin, 63, 2128-2144
  9. Hower, J., Eslinger, E.V., Hower, M.E. and Perry, E.A. (1976) Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical chemical evidence. Geoological Society of American Bulletin, 87, 725-737 https://doi.org/10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2
  10. Inoue, A., Meunier, A. and Beaufort, D. (2004) Illite-smectite mixed layer minerals in felsic volcaniclastic rocks from drill cores, Kakkonda, Japan. Clays and Clay Minerals, 52, 66-84 https://doi.org/10.1346/CCMN.2004.0520108
  11. Nadeau, P.H., Wilson, M.J., Mchard, W.J. and Tait, J.M. (1984) Interparticle diffraction: A new concept for interstratified clays. Clays and Clay Minerals, 19, 757-969 https://doi.org/10.1180/claymin.1984.019.5.06
  12. Ozawa, A., Takayasu, T., Ikebe, Y. and Huzioka, K. (1977) Geology of the Honjo district. Quadrangle Series 1 :50,000, Akita (6) No. 28. Geological Survey of Japan, 54p
  13. Pollastro, R.M. (1990) The illite/smectite geothermometer - Concept, methdology, and application to basin history and hydrocarbon generation. In Application of Thermal Maturity Studies to Energy Exploration. Nuccio, V.F. and Barker, C.E.., eds., 1-18
  14. Pollastro, R.M. (1993) Considerations and applications of the smectite/illite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age. Clays and Clay Minerals, 41, 119-133 https://doi.org/10.1346/CCMN.1993.0410202
  15. Son, B.-K. (1996) Mineralogy and diagenesis of interstratified I/S in the Tertiary Yeonil sediment, SE Korea. Clay Science, 9, 359-384
  16. Son, B.-K., Yoshimura, T. and Fukasawa, H. (2001) Diagenesis of dioctahedral and trioctahedral smectites from alternating beds in Miocene and Pleistocene rocks of the Niigata basin, Japan. Clays and Clay Minerals, 49, 333-346 https://doi.org/10.1346/CCMN.2001.0490407
  17. Srodon, J. and Eberl, D.D. (1984) Illite: In Micas, S.W. Bailey, ed., Reviews in Mineralogy, Mineralogical Society of America, 13, 495-544