Prediction of Polychlorinated-dibenzofurans (PCDFs) Formation in Municipal Waste Incinerator

도시소각로에서 Polychlorinated-dibenzofurans (PCDFs)의 생성 예측

  • Ryu, Jae-Yong (Environmental Research Team, Daegu-Gyeongbuk Development Institute) ;
  • Suh, Jeong-Min (Regional Environmental System Engineering, Pusun National University)
  • 류재용 (대구경북연구원 환경연구팀) ;
  • 서정민 (부산대학교 지역환경시스템)
  • Published : 2006.12.31

Abstract

The role of chlorination reactions in the formation of polychlorinated dibenzofurans (PCDFs) in a municipal waste incinerator was assessed using a chlorination model for predicting PCDF isomer distributions. Complete distributions of PCDF congeners were obtained from a stoker-type municipal waste incinerator operated under 13 test conditions. Samples were collected from the flue gas prior to the gas cleaning system. While total PCDF yields varied by a factor of five to six, the distributions of congeners were similar. A chlorination model, dependent only on the observed distribution of monochlorinated isomers, was developed to predict the distributions of poly-chlorinated isomers formed by chlorination of dibenzofuran (DF). Agreement between predicted and measured PCDF isomer distributions was high for all homologues, supporting the hypothesis that DF chlorination can play an important role in the formation of PCDF byproducts.

Keywords

References

  1. Addink, R., B.V. Bavel, R. Visser, H. Wever, P. Slot, and K. Olie (1990) Surface catalyzed formation of polychlorinated dibenzo-p-dioxins/dibenzofurans during municipal waste incineration. Chemosphere, 20, 1929-1934 https://doi.org/10.1016/0045-6535(90)90362-W
  2. Born, J.G.P., R. Louw, and P. Mulder (1989) Formation of dibenzodioxins and dibenzofurans in homogeneous gas-phase reactions of phenols. Chemosphere, 19, 401-406 https://doi.org/10.1016/0045-6535(89)90342-1
  3. Born, J.G.P., P. Mulder, and R. Louw (1993) Fly ash mediated reactions of phenol and monochlorophenols: oxychlorination, deep oxidation, and condensation. Environ. Sci. Technol., 27, 1849-1863 https://doi.org/10.1021/es00046a013
  4. Dickson, L.C., D. Lenoir, and O. Hutzinger (1992) Quantitative comparison of de novo and precursors formation of polychlorinated dibenzo-p-dioxins under simulated municipal solid waste in cinerator postcombustion conditions. Environ. Sci. Technol., 26, 1822-1828 https://doi.org/10.1021/es00033a017
  5. Griffin, R.D. (1986) A new theory of dioxin formation in municipal solid waste combustion. Chemosphere, 15, 1987-1990 https://doi.org/10.1016/0045-6535(86)90498-4
  6. Gullett, B.K., K.R. Bruce, and L.O. Beach (1990) The effect of metal catalysts on the formation of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran precursors. Chemosphere, 20, 1945-1952 https://doi.org/10.1016/0045-6535(90)90364-Y
  7. Gullett, B.K., J.E. Dunn, S.-K. Bae, and K. Raghunathan (1998) Effects of combustion parameters on polychlorinated dibenzodioxin and dibenzofuran homologue profiles from municipal waste and coal cocombustion. Waste Mamagement, 18, 473-483 https://doi.org/10.1016/S0956-053X(98)00132-9
  8. Gullett, B.K., J.E. Dunn, and K. Raghunathan (2000) Effect of Cofiring Coal on Formation of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans during Waste Combustion. Enviorn. Sci. Technol., 34, 282-290 https://doi.org/10.1021/es990605z
  9. Hatanaka, T., T. Imagawa, and M. Takeuchi (2002) Effects of copper chloride on formation of polychlorinated dibenzofurans in model waste incineration in a laboratory-scale fluidized-bed reactor. Chemosphere, 46, 393-399 https://doi.org/10.1016/S0045-6535(01)00059-5
  10. Hoffman, R.V., G.A. Eiceman, Y.-T. Long, M.C. Collins, and M.-C. Lu (1990) Mechanism of chlorination of aromatic compounds adsorbed on the surface of fly ash from municipal incinerators. Environ. Sci. Technol., 24, 1635-1641 https://doi.org/10.1021/es00081a002
  11. Hutzinger, O., M.J. Blumich, M. Van den berg, and K. Olie (1985) Sources and fate of PCDDs and PCDFs: An overview. Chemosphere, 14, 581-600 https://doi.org/10.1016/0045-6535(85)90167-5
  12. Iino, F., T. Imagawa, and B.K. Gullett (2000) Dechlorinationcontrolled polychlorinated dibenzo-furan isomer patterns from municipal waste incinerators. Environ. Sci. Technol., 34, 3143-3147 https://doi.org/10.1021/es9913131
  13. Mulholland, J.A. and J.-Y. Ryu (2001) Formation of polychlorinated dibenzo-p-dioxins by $CuCl_2$-catalyzed condensation of 2,6 chlorinated phenols. Combust. Sci. Technol., 169, 107-126 https://doi.org/10.1080/00102200108907842
  14. Nakahata, D.-T. and J.A. Mulholland (2000) Effect of dichlorophenol substitution pattern on furan and dioxin formation. P. Combust. Inst., 28, 2701-2707
  15. Nottrodt, A., K.D. Sladek, W. Zoller, H. Buchert, Th. Class, W. Kraemer, R. Kohnle, H. Magg, P. Mayer, M. Swerev, and K. Ballschmitter (1984) Muell Abfall, 16, 313
  16. Ryu, J.-Y., J.A. Mulholland, J.-E. Oh, D.-T. Nakahata, and D.-H. Kim (2004) Prediction of polychlorinated dibenzofuran congener distribution from gas-phase phenol condensation pathways. Chemosphere, 55, 1447-1455 https://doi.org/10.1016/j.chemosphere.2004.01.002
  17. Ryu, J.-Y., J.A. Mulholland, and B. Chu (2003a) Chlorination of dibenzofuran and dibenzo-p-dioxin vapor by copper (II) chloride. Chemosphere, 51, 1031-1039 https://doi.org/10.1016/S0045-6535(02)00844-5
  18. Ryu, J.-Y., J.A. Mulholland, and J.E. Dunn (2003b) Polychlorinated dibenzofuran (PCDF) prediction from dibenzofuran chlorination. Organohalogen Compd., 63, 49-52
  19. Stieglitz, L., G. Zwick, J. Beck, H. Bautz, and W. Roth (1989) Carbonaceous particles in fly ash-a source for the de-novo-synthesis of organochlorocompounds. Chemosphere, 19, 283-290 https://doi.org/10.1016/0045-6535(89)90325-1
  20. Stieglitz, L., H. Vogg, G. Zwick, J. Beck, and H. Bautz (1991) On formation conditions of organohalogen compounds from particulate carbon of fly ash. Chemosphere, 23, 1255-1264 https://doi.org/10.1016/0045-6535(91)90150-C
  21. Taylor, P.H., S.S. Sidhu, W.A. Rubey, B. Dellinger, A. Wehrmeier, D. Lenoir, and K.-W. Schramm (1998) Evidence for a unified pathway of dioxin formation from aliphatic hydrocarbons. P. Combust. Inst., 27, 1769-1778
  22. US EPA (1996) Test Method 0023A, Office of Solid Waste and Emergency Response; SW-856 (NTIS PB-88-239223); Washington, DC
  23. Weber, R., F. Iino, T. Imagawa, M. Takeuchi, T. Sakurai, and M. Sadakata (2001) Formation of PCDF, PCDD, PCB, and PCN in de novo synthesis from PAH: Mechanistic aspects and correlation to fluidized bed incinerators. Chemosphere, 44, 1429-1438 https://doi.org/10.1016/S0045-6535(00)00508-7
  24. Wikstrom, E. and S. Marklund (2000) Secondary formation of chlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls, benzenes and phenols during MSW combustion. Environ. Sci. Technol., 34, 604-609 https://doi.org/10.1021/es9906498
  25. Wikstrom, E. and S. Marklund (2001) The influence of level and chlorine source on the formation of mono- to octa-chlorinated dibenzo-p-dioxins, dibenzofurans and coplanar polychlorinated biphenyls during combustion of an artificial municipal waste. Chemosphere, 43, 227-234 https://doi.org/10.1016/S0045-6535(00)00155-7
  26. Yamamoto, T., S. Inoue, and M. Sawachi (1989) Post furnace formation and progressive chlorination of PCDD and PCDF in munucipal waste incinerator. Chemosphere, 19, 271-276 https://doi.org/10.1016/0045-6535(89)90323-8
  27. Zimmermann, R., M. Blumenstock, H.J. Heger, K.-W. Schramm, and A. Kettrup (2001) Emission of nonchlorinated and chlorinated aromatics in the flue gas of incineration plants during and after transient disturbances of combustion conditions: delayed emission effects. Environ. Sci. Technol., 35, 1019-1030 https://doi.org/10.1021/es000143l