Preparation of electrostatic spray pyrolysis derived nano powder and hydroxyapatite forming ability

정전분무 열분해법에 의한 나노분말의 제조 및 하이드록시 아파타이트 형성능력 평가

  • Lee, Young-Hwan (Department of Automobile, Chunnam Techno College) ;
  • Jeon, Kyung-Ok (Camera Module Team, Korea Photonics Technology Institute) ;
  • Jeon, Young-Sun (Camera Module Team, Korea Photonics Technology Institute) ;
  • Lee, Ji-Chang (Department of Applied Optics, and Institute of Photoelectronic Technology, Nambu University) ;
  • Hwang, Kyu-Seog (Department of Applied Optics, and Institute of Photoelectronic Technology, Nambu University)
  • 이영환 (전남과학대학 자동차과) ;
  • 전경옥 (한국광기술원 카메라 모듈팀) ;
  • 전영선 (한국광기술원 카메라 모듈팀) ;
  • 이지창 (남부대학교 광응용학과 & 광전자기술연구소) ;
  • 황규석 (남부대학교 광응용학과 & 광전자기술연구소)
  • Published : 2006.12.31

Abstract

Electrostatic spray pyrolysis, a novel fabrication technique, has been used in this study to prepare calcium phosphate nano powders. Final annealing was done at $400^{\circ}C$ for 30min in air. The hydroxyapatite - forming ability of the annealed powder has been evaluated in Eagle's minimum essential medium solution (MEM). X-ray diffraction analysis, field emission - scanning electron microscope, energy dispersive X-ray spectroscope, and Fourier transform infrared spectroscope were used to characterized the annealed powders after immersion in MEM. The powder with an amorphous structure induced hydroxyapatite formation on their surfaces after immersion fer 15 days.

본 연구에서는 새로운 나노 분말 제조방법 중의 하나인 정전분무 열분해법을 이용하여 칼슘 포스페이트 나노분말을 제조하였다. 정전 분무된 분말은 공기 중에서 $400^{\circ}C$로 30분간 열처리하여 고상화하였다. 결정화된 분말의 하이드록시 아파타이트 형성능력을 평가하기 위하여 Eagle's minimum essential medium solution(MEM)을 사용하였으며, MEM 용액에 침전된 후의 분말의 특성평가를 위하여 X-선 회절 분석법, 전계 방사 주사형 전자 현미경, 에너지 분산 X-선 분광계 및 퓨리에 변환 적외선 분광계를 사용하여 분석을 행하였다. 비정질 구조를 가진 나노 분말은 MEM 용액에 15일 침전 후, 분말의 표면에 유도된 하이드록시 아파타이트 결정을 확인할 수 있었다.

Keywords

References

  1. S. Nakamura, T. Kobayashi and K. Yamashita, 'Extended bioactivity in the proximity of hydroxyapatite ceramic surfaces induced by polarization charges', J. Biomed. Mater. Res. 61 (2002) 593 https://doi.org/10.1002/jbm.10224
  2. Y Suetsugu and J. Tanaka, 'Crystal growth of carbonate apatite using a $CaCO_{3}$ flux', J. Mater. Sci.: Mater. in Med. 10 (1999) 561 https://doi.org/10.1023/A:1008972432076
  3. V.P. Orlovskii, N.A. Zakharov and A.A. Ivanov, 'Structural transition and dielectric characteristics of highpurity hydroxyapatite', Inorganic Mater. 32(6) (1996) 654
  4. B. Kim, J. An, Y Jeon, B. Kang and K. Hwang, 'Calcium- phosphate formation on a nanocrystalline zirconia layer', J. Kor. Phys. Soc. 44(4) (2004) 1012
  5. J. Oh, Y Lee, B. Kang, S. Kim and K. Hwang, 'Biomimetic formation of calcium phosphate on thermally oxidized cp-titanium surfaces', Ceram. Int. 29 (2003) 847 https://doi.org/10.1016/S0272-8842(02)00233-X
  6. K. Hwang, J. Song, B. Kang and Y. Park, 'Sol-gel derived hydroxyapatite films on alumina substrates', Surf. and Coat. Tech. 123 (2000) 252 https://doi.org/10.1016/S0257-8972(99)00512-5
  7. Y. Lim, Y. Park, Y. Yun and K. Hwang, 'Functionally graded TilHAP coatings on Ti-6AI-4V obtained by chemical solution deposition', Ceram. Int. 28 (2002) 37 https://doi.org/10.1016/S0272-8842(01)00055-4
  8. W.L., Suchanek, P. Shuk, K. Byrappa, R.E. Riman, K.S. TenHuisen and V.F. Janas, 'Mechanochemical-hydrothermal synthesis of carbonated apatite powders at room temperature', Biomater. 23(3) (2002) 699 https://doi.org/10.1016/S0142-9612(01)00158-2
  9. N. Uekawa, M. Suzuki, T. Ohmiya, F. Mori, YJ. Wu and K. Kakegawa, 'Synthesis of rutile and anatase $TiO_{2}$ nanoparticles from Ti-peroxy compound aqueous solution with polyols', J. Mater. Res. 18(4) (2003) 797 https://doi.org/10.1557/JMR.2003.0110
  10. K.L. Choy, 'Processing-structure-property of nanocrystalline materials produced using novel and cost-effective ESAVD-based methods', Mater. Sci. and Eng. C 16 (2001) 139
  11. M. Cloupeau and B. Prunet-Foch, 'Electrostatic spraying of liquids: Main functioning modes', J. Electrostatics 25 (1990) 165 https://doi.org/10.1016/0304-3886(90)90025-Q
  12. Y Lim, B. Kim, Y Jeon, K. Jeon and K. Hwang, 'Calcium phosphate films deposited by electrostatic spray deposition and an evaluation of their bioactivity', J. Ceram. Proc. Res. 6(3) (2005) 255
  13. B. Kim, J. An, B. Kang, K. Hwang and J. Oh, 'Preparation of $TiO_{2}$ layers by spin coating-pyrolysis and invitro formation of calcium phosphate', J. Ceram. Proc. Res. 5(1) (2004) 53
  14. B.C. Yang, J. Weng, X.D. Li and X.D. Zhang, 'The order of calcium and phosphate ion deposition on chemically treated titanium surfaces soaked in a aqueous solution', J. Biomed. Mater. Res. 47 (1999) 213 https://doi.org/10.1002/(SICI)1097-4636(199911)47:2<213::AID-JBM11>3.0.CO;2-C
  15. J. Pan, H. Liao, C. Leygraf, D. Thierry and J. Li, 'Variration of oxide films on titanium induced by osteoblastlike cell culture and the influence of an $H_{2}O_{2}$ pretreatment', J. Biomed. Mater. Res. 40 (1998) 244 https://doi.org/10.1002/(SICI)1097-4636(199805)40:2<244::AID-JBM9>3.0.CO;2-L
  16. E.A.P. De Maeyer, R.M.H. Verbeeck and D.E. Nassens, 'Stoichiometry of $Na^{+} and CO_{3}^{2-}$ containing hydroxyapatite obtained by the hydrolysis of monetite', Inorg. Chern. 32 (1993) 5709 https://doi.org/10.1021/ic00077a011
  17. J. Oh, J. Ahn, Y. Yun, B. Kang, S. Kim, K. Hwang and Y. Shim, 'Preparation of nanocrystalline $ZrO_{2}$ film by using a zirconium naphthenate and evaluation of calcium phosphate forming ability', J. Kor. Ceram. Soc. 39(9) (2002) 884 https://doi.org/10.4191/KCERS.2002.39.9.884
  18. P. Peltola, M. Patsi, H. Rahiala, I. Kangasniemi and A. Yli-Urpo, 'Calcium phosphate onduction by sol-gelderived titania coatings on titanium substrates in vitro', J. Biomed. Mater. Res. 41 (1998) 504 https://doi.org/10.1002/(SICI)1097-4636(19980905)41:3<504::AID-JBM22>3.0.CO;2-G