Effects of $NaBH_4$ and laponite on the stability of colloidal Ag nanoparticles

나노 은 콜로이드 입자의 안정성에 대한 $NaBH_4$ 및 Laponite의 영향

  • Lee, Jung-Baek (Department of Chemistry and Institute of Basic Science, Dankook University) ;
  • Kim, Dong-Hwan (Department of Chemistry and Institute of Basic Science, Dankook University) ;
  • Seo, Jae-Seok (Department of Chemistry and Institute of Basic Science, Dankook University) ;
  • Kim, You-Hyuk (Department of Chemistry and Institute of Basic Science, Dankook University)
  • 이정백 (단국대학교 첨단과학대학 화학과, 기초과학연구소) ;
  • 김동환 (단국대학교 첨단과학대학 화학과, 기초과학연구소) ;
  • 서재석 (단국대학교 첨단과학대학 화학과, 기초과학연구소) ;
  • 김유혁 (단국대학교 첨단과학대학 화학과, 기초과학연구소)
  • Published : 2006.12.31

Abstract

The synthesis and characterization of silver colloidal nanoparticles by chemical reduction of silver ions in aqueous $AgNO_3$ using sodium borohydride $(NaBH_4)$ as the reducing agent are described. The experimental conditions for aggregation and paricle size of nanosilver particles in water is investigated in terms of concentration of $NaBH_4$, reaction temperature, dropping rate of $AgNO_3$ and concentration of laponite. Stable nanosilver sol is obtained at three molar ratio of $NaBH_4/AgNO_3$ in conditions of without laponite. The size of nanosilver particles is increased as the reaction temperature is increased. The large size of nanosilver sol is obseved as the dropping rate of $AgNO_3$ is increased due to the aggregation of initial high local concentration of nanosilver particles. Stable nanosilver sol at high temperature $(>\;100^{\circ}C)$ can be prepared when laponite is used as protective colloid.

본 연구에서는 수용액에서 화학적 환원 방법을 사용하여 나노미터 수준의 은을 합성하는데 있어서 입자크기 및 응집에 영향을 줄 수 있는 $NaBH_4$의 농도, 반응 온도, 반응물 첨가속도 및 laponite의 농도에 대하여 연구하였다. laponite가 없는 조건하에서는 $NaBH_4/AgNO_3$의 몰 비가 3일 때 안정한 나노 은 졸이 형성되었으며 또한 환원반응의 온도가 증가 할수록 은 입자의 평균 크기는 증가하였다. 또한 $AgNO_3$의 첨가속도가 빠르면 초기반응단계에서 형성된 높은 농도의 은 입자들이 응집되어 입자크기가 큰 나노 은이 생성됨을 보여 주고 있다. 보호층 콜로이드로 laponite를 사용하였을 때 고온 $(>\;100^{\circ}C)$에서 안정한 나노 은 졸을 합성할 수 있었다.

Keywords

References

  1. G. Timp, 'Nanotechnology', 1st Ed. (Springer-Verlag, New York, 1999) p. 425
  2. V. Homebecq, M. Antonietti, T. Cardinal and M. Treguer-Delapierre, 'Stable silver nanoparticles immobilized in mesoporous silica', Chern. Mater. 15 (2003) 1993 https://doi.org/10.1021/cm021353v
  3. Y. Tan, Y. Wang, L. Jiang and D. Zhu, 'Thiosalicylic acid-functionalized silver nanoparticles synthesized in one-phase system', J. Colloid Interface Sci. 249 (2002) 336 https://doi.org/10.1006/jcis.2001.8166
  4. L. Rodriguez-Sanchez, M.C. Blanco and M.A. LopezQiintela, 'Electrochemical synthesis of silver nanoparticles', J. Phys. Chern. B 104 (2000) 9683 https://doi.org/10.1021/jp001761r
  5. D.L. Van Hyning and C.F. Zukoski, 'Formation mechanism and aggregation behavior of borohydride reduced silver particles', Langmuir 14 (1998) 7034 https://doi.org/10.1021/la980325h
  6. P.D. Kaviratna, T.J. Pinnavaia and P.A. Schroeder, 'Dielectric properties of smectite clays', J. Phys Chern. Solids 57 (1996) 1897 https://doi.org/10.1016/S0022-3697(96)00076-5
  7. P. Mulvaney, 'Surface Plasmon spectroscopy of nanosized metal particles', Langmuir 12 (1996) 788 https://doi.org/10.1021/la9502711
  8. A. Moores and F. Goettmann, 'The plasmon band in noble metal nanoparticles: an introduction to theory and applications', New J. Chern. 30 (2006) 1121 https://doi.org/10.1039/b604038c
  9. Y. Liu, C.-y. Liu, L.-b. Chen and Z.-y. Zhang, 'Adsorption of cations onto the surfaces of silver nanoparticles', J. Colloid Interface Sci. 257 (2003) 188 https://doi.org/10.1016/S0021-9797(02)00027-9
  10. R. Davis, E. Bromels and C. Kibby, 'Boron hydrides. III. Hydrolysis of sodium borohydride in aqueous solution', J. Am. Chern. Soc. 84 (1962) 885 https://doi.org/10.1021/ja00865a001