DOI QR코드

DOI QR Code

Characteristics of Heavy Metal Releases from the Abandoned Dogog Mine Tailing in Korea

도곡광산 광미의 중금속 용출 특성

  • Park, Chang-Jin (Bio-resources Research Group, KT&G Central Research Institute) ;
  • Kim, Won-Il (National Institute of Agricultural Science and Technology, RDA) ;
  • Jeong, Goo-Bok (National Institute of Agricultural Science and Technology, RDA) ;
  • Lee, Jong-Sik (National Institute of Agricultural Science and Technology, RDA) ;
  • Ryu, Jong-Su (National Institute of Agricultural Science and Technology, RDA) ;
  • Yang, Jae-E. (Dept. of Biological Environment, Kangwon National University)
  • Published : 2006.12.31

Abstract

Objective of this research was to assess the release characteristics of metals from the mine tailing to base the prediction of metal load potential from tailing to soils. Water-soluble concentrations of Cd, Cu, Pb and Zn released from mine tailing after 2 hrs were 2.31, 129.38, 17.17, and 287.53 mg/kg, respectively, as compared to 1.6, 128, 108, and 142 mg/kg that were extractable by 0.1 M HCl. Kinetics of metal releases followed the power function model significantly indicating that more of water soluble fractions of those metals released at the initial short time, followed by a slow increase. Concentrations of metals released from tailing by water and 0.1 M HCl were in the orders of Zn > Cu > Pb > Cd. The breakthrough curve from the column experiment showed that concentrations of Cd, Cu, and Zn reached at highest after one pore volume, but that of Pb reached highest after five pore volumes when 0.1 M HCl was used as eluent. The release rate of Cd from mine tailing was the fastest but Pb was the slowest. The cumulative mass of metal released by 0.1 M HCl was in the order of Zn > Cu > Pb > Cd after nine pore volume elution.

본 연구는 도곡 광산의 광미 중 Cd, Cu, Pb, Zn의 용출 특성을 탐색하기 위해 수행하였으며, 환경에 영향을 미칠 수 있는 수용성과 0.1 M HCl 용출물을 대상으로 Batch 시험과 Column 시험을 실시하였다. Batch 시험에서 수용성 중금속은 Cd 2.31 mg/kg, Cu 129.38 mg/kg, Pb 17.17 mg/kg, Zn 287.53 mg/kg이었으며, 0.1H HCl 추출물은 Cd mg/kg, Cu mg/kg, Pb mg/kg, Zn mg/kg이었다. 수용성 중금속의 초기 용출농도는 Zn > Cu > Pb > Cd의 순이었으며, 수용성 중금속의 용출속도상수는 Pb > Cu > Cd > Zn의 순이었다. 0.1M HCl 추출물의 초기 용출농도는 Zn > Cu > Pb > Cd의 순이었으며, 용출속도상수는 Pb > Cd > Zn > Cu의 순이었다. 중금속의 용출속도는 주로 추출액과 광미의 물리적 화학적 특성에 따라 달라질 수 있으며, 이러한 결정 요소에 의하여 본 시험에서는 Pb의 용출속도가 가장 높은 것으로 조사되었다. Column시험에서 수용성 중금속은 Cd과 Cu, Zn의 경우 2 pore volume에서 의사평형에 도달하였으나, Pb의 경우 10 pore volume에서 의사 평형에 도달하였다. 0.1 M HCl을 column에 통과시켰을 때 Cd, Cu, Zn은 1 pore volume에서 용출농도의 최대점을 나타냈으나, Pb은 5 pore volume에서 최대점을 나타내었으며, 이동속도는 Cd > Zn > Cu > Pb의 순으로 조사되었다.

Keywords

References

  1. Kim, H. J., Yang, J. E., Lee, J. Y. and Jun, S. H. (2003) A Study on Fractions and Leaching Potential of Heavy Metals in Abandoned Mine Wastes. J. of KoSSGE 8(3):45-55
  2. Park, Y. A. (1996) Designing and applicability of soil pollution indices for estimating quality of soil polluted with heavy metals and arsenic. J. of KOSES 1(1): 47-54
  3. Kim, H. J., Yang, J. E., Lee, J. Y., Choi, S. I. and Jun, S. H. (2003) Fraction and Soil Pollution Assesment Index of Heavy Metals in Cultivated Land Soils Near the Abandoned Mine. J. of KoSSGE 8(4): 53-63
  4. Jung, M. C. (1995) Heavy metal contamination of soil, plants, waters and sediments in the vicinity of metalliferous mine in Korea, Ph.D thesis, University of London. p. 455
  5. 환경부. 2002. 토양오염공정시험법
  6. 농업과학기술원. 1988. 토양화학분석법
  7. Bowen, H. J. M. (1979) Environmental chemistry of the elements, Academic press, London
  8. Istvan, P. and Jones Jr. (1997) Trace elements. CRC., Lucie Press
  9. Lee, P. K, Kang, M. J., Choi, S. H. and Shin, S. C. (2004) Chemical Speciation and Potential Mobility of Heavy Metals in Tailings and Contaminated Soils. Econ. Environ. Geol. 37(1): 87-98
  10. Saomons, E. L. (1994) Mobilization of metals from sediments; Metals and their compound in environment (ed. by E. Marin). p. 357
  11. Charudhuri, D., Tripathy, S., Veeresh, H., Powell, M. A., and Hart, B. R. (2003) Mobility and bioavailability of selected heavy metals in coal ashand sewage sludge-amended acid soil. Environmental Geology 44: 419-432 https://doi.org/10.1007/s00254-003-0777-2
  12. Sparks, D. L. (1995) Environmental Soil Chemistry. Academic Press, Inc., San Diego, p. 112-127
  13. Weiner, E. R. (2000) Application of Environmental Chemistry: A Practical Guide for Environmental Professionals. Lewis Publishers. Boca, Raton, London, New York, Washington D.C. pp. 81-103
  14. Tack, F. M. G., Singh, S. P. and Verloo, M. G. (1999) Leaching behaviour of Cd, Cu, Pb and Zn in surface soils derived from dredged sediments. Environmental Pollution. 106: 107-114 https://doi.org/10.1016/S0269-7491(99)00053-6
  15. Kiekens, L. (1980) Adsorptieverschinjnselen van zware metalen in gronden. PhD thesis, RUG, Gent. Belgium

Cited by

  1. Evaluating Stabilization Efficiency of Coal Combustion Ash (CCA) for Coal Mine Wastes: Column Experiment vol.44, pp.6, 2011, https://doi.org/10.7745/KJSSF.2011.44.6.1071
  2. Current research trends for heavy metals of agricultural soils and crop uptake in Korea vol.31, pp.1, 2012, https://doi.org/10.5338/KJEA.2012.31.1.75
  3. Application of Galvanic Oxidation and Pyrite Dissolution for Sustainable In-Situ Mine Tailings Treatment vol.3, pp.4, 2016, https://doi.org/10.17820/eri.2016.3.4.279