Runoff of Diazinon and Metolachlor by Rainfall Simulation and from Soybean Field Lysimeter

인공강우와 콩재배 포장 라이시메타를 이용한 diazinon과 metolachlor의 유출량 평가

  • Kim, Chan-Sub (National Institute of Agricultural Science and Technology, Rural Development Adminstration) ;
  • Lee, Byung-Moo (National Institute of Agricultural Science and Technology, Rural Development Adminstration) ;
  • Park, Byung-Jun (National Institute of Agricultural Science and Technology, Rural Development Adminstration) ;
  • Jung, Pil-Kyun (National Institute of Agricultural Science and Technology, Rural Development Adminstration) ;
  • Choi, Ju-Hyeon (National Institute of Agricultural Science and Technology, Rural Development Adminstration) ;
  • Ryu, Gab-Hee (National Institute of Agricultural Science and Technology, Rural Development Adminstration)
  • 김찬섭 (농촌진흥청 농업과학기술원) ;
  • 이병무 (농촌진흥청 농업과학기술원) ;
  • 박병준 (농촌진흥청 농업과학기술원) ;
  • 정필균 (농촌진흥청 농업과학기술원) ;
  • 최주현 (농촌진흥청 농업과학기술원) ;
  • 류갑희 (농촌진흥청 농업과학기술원)
  • Published : 2006.12.30

Abstract

Three different experiments were undertaken to investigate the runoff and erosion loss of diazinon and metolachlor from sloped-field by rainfall. The mobility of two pesticides and which phase they were transported by were examined in adsorption study, the influence of rainfall pattern and slope degree on the pesticide losses were evaluated in simulated rainfall study, and the pesticide losses from soybean field comparing with bare soil were measured in field lysimeter study. Freundlich adsorption parameter (K) ranged $1.6{\sim}2.0$ for metolachlor and $4.0{\sim}5.5$ for diazinon. The K values of pesticides by the desorption method were higher than those ones by the adsorption method. Another parameter (1/n) in Freundlich equation for the pesticides tested ranged $0.96{\sim}1.02$ by desorption method and $0.87{\sim}1.02$ by adsorption method. By the SSLRC's classification for pesticide mobility of diazinon and metolachlor were classified as moderately mobile ($75{\leq}Koc$ <500). Runoff and erosion losses of pesticides by three rainfall scenarios were $0.5{\sim}1.0%$ and $0.1{\sim}0.7%$ for metolachlor and $0.1{\sim}0.6%$ and $0.1{\sim}0.2%$ for diazinon. Distribution of pesticides in soil polite were investigated after the simulated rainfall events. Metolachlor was leached to $10{\sim}15$ cm soil layer and diazinon was leached to $5{\sim}10$ cm soil layer. Losses of each pesticide in the 30% of sloping degree treatment were $0.2{\sim}1.9$ times higher than those ones in the 10% of sloping degree treatment. Pesticide losses from a series of lysimeter plots in sloped land by rainfall ranged $1.0{\sim}3.1%$ for metolachlor and $0.23{\sim}0.50%$ for diazinon, and were $1/3{\sim}2.5$ times to the ones in the simulated rainfall study. The erosion rates of pesticides from soybean-plots were $21{\sim}75%$ lower than the ones from bare soil plots. The peak runoff concentration in soybean-plots and bare soil plots were $1{\sim}9{\mu}gL^{-1}$ and $3{\sim}16{\mu}gL^{-1}$ for diazinon, $7{\sim}31{\mu}gL^{-1}$ and $5{\sim}40{\mu}gL^{-1}$ for metolachlor, respectively.

강우에 의한 경사지 토양으로부터의 농약 유출양상을 파악하고 그에 대한 환경적 요인 및 영농방법등의 영향 정도를 평가하기 위하여 토양흡착실험과 인공강우유출실험 및 콩 재배 lysimeter 포장에서 유출 실험을 수행하였다. 흡착실험을 수행하여 농약의 이동 가능성과 이동형태를 파악하고, 인공강우시설을 이용한 유출실험으로 강우양상 및 경사도의 영향 정도를 살펴보고, 콩 재배 경사지 포장에 설치된 lysimeter 실험을 수행하여 작물 재배에 따른 농약의 유실 양상 차이를 파악하여 농약의 표면유출에 의한 유실 수준을 평가하고자 하였다. 두 농약의 Freundlich 흡착계수 K는 diazinon은 $4.0{\sim}5.5$이었고 metolachlor는 $1.6{\sim}2.0$이었다. Freundlich 등온흡착식의 직선성을 나타내는 1/n 값은 탈착방법의 경우 $0.96{\sim}1.02$이었고 흡착방법의 경우는 $0.87{\sim}1.02$이었다. 영국 SSLRC의 이동성 분류기준으로 판단하면 diazinon과 metolachlor는 moderately mobile ($75{\leq}Koc$ <500) 등급에 해당하였다. 인공강우 처리구의 유출수 및 유실토양에 의한 농약 유실률은 각각 diazinon $0.1{\sim}0.6%$$0.1{\sim}0.2%$, metolachlor $0.5{\sim}1.0%$$0.1{\sim}0.7%$ 이었고, 경사도 30%의 경우가 10%에 비하여 농약 유실량이 $0.2{\sim}1.9$ 배 많았다. 인공강우실험 후 농약의 토심별 분포를 살펴 본 결과 diazinon은 토심 $5{\sim}10$ cm까지 이동하였고 metolachlor는 토심 $10{\sim}15$ cm까지 이동하였다. Lysimeter 포장유출실험 결과 경사도 및 경사장별 나지구의 유실량은 diazinon $0.23{\sim}0.50%$, metolachlor $1.0{\sim}3.1%$ 수준이었으며, 인공강우실험의 유실률에 비하여 $1/3{\sim}2.5$ 배 수준으로 나타났다. 콩재배구의 유실률은 나지구의 유실률에 비하여 평균적으로 $21{\sim}75%$ 정도 감소된 것으로 나타났다. 유출수 중 농약성분의 최고농도는 콩재배구 및 나지구 각각 diazinon $1{\sim}9{\mu}g\;L^{-1}$$3{\sim}16{\mu}g\;L^{-1}$, metolachlor $7{\sim}31{\mu}g\;L^{-1}$$5{\sim}40{\mu}g\;L^{-1}$ 수준으로 작물 재배 여부에 따른 유출수 중 농도의 차이는 크지 않은 것으로 나타났다.

Keywords

References

  1. Boesten, J. J. T. I. and A. M. A, van der Linden. (1991) Modeling the influence of sorption and transformation on pesticide leaching and persistence, J. Environ. Qual. 20:425-435 https://doi.org/10.2134/jeq1991.00472425002000020015x
  2. European Commission (2004) Technical review report for S-metolachlor, SANCO/1426/2001 - rev.3
  3. European Food Safety Authority (2006) Conclusion on the peer review of diazinon, Appendix 1 - list of endpoints
  4. FOCUS (2004) FOCUS surface water scenarios in the ED evaluation process under 91/414/EEC
  5. Gaynor, J. D., D. C, MacTavish and W. I, Findlay. (1995) Atrazine and metolachlor loss in surface and subsurface runoff from three tillage treatments in com, J. Environ. Qual. 24:246-256 https://doi.org/10.2134/jeq1995.00472425002400020006x
  6. Gustafson, D. I. (1989) Groundwater ubiquity score: A simple method for assessing pesticide leachability, Environ. Toxicol. Chem. 8:339-357 https://doi.org/10.1897/1552-8618(1989)8[339:GUSASM]2.0.CO;2
  7. Jarvis, N. J., J. M, Hollis., P. H, Nicholls., T Mayer. and Evans, S. P. (1997) MACRO_DB : A decisionsupport tool for assessing pesticide fate and mobility in soils, Environmental Modelling & Software 12:251-265 https://doi.org/10.1016/S1364-8152(97)00147-3
  8. Jury, W. A., D. D, Focht. and W. J, Farmer. (1987) Evaluation of pesticide groundwater pollution potential from standard indices of soil-chemical adsorption and biodegradation, J. Environ. Qual. 16:422-428 https://doi.org/10.2134/jeq1987.00472425001600040022x
  9. Leonard, R. A. (1990) Movement of pesticides into surface waters, In Pesticides in the soil environment: processes, impacts and modeling, H. H. Cheng, (Ed.), Soil Science Society of America, Madison, WI. pp.303-349
  10. McCall, P. J., R. L, Swann., D. A, Laskowski., S. M, Unger., S. A, Vrana and H. J, Dishburger. (1980). Estimation of chemical mobility in soil from liquid chromatographic retention times, Bull. Environ. Contam. Toxicol. 24:190-195 https://doi.org/10.1007/BF01608096
  11. OECD (1993) Test guideline 106 Adsorption/desorption, In DECD guidelines for testing of chemicals
  12. Roberts, T. R. (1996) Assessing the environmental fate of agrochemicals, J. Environ. Sci. Health. B31:325-335
  13. Tomlin, C. (ed.) (2003) The pesticide manual (13th ed.), British Crop Protection Council
  14. US EPA (1994) Sediment and adsorption isotherm, In Code of federal regulation 40 part 790 to end, pp.157-161
  15. U.S. EPA (1995) Reregistration Eligibility Decision for metolachlor, U.S. EPA Doc. No. 738-R-95-006
  16. U.S. EPA (2004) Interim Reregistration Eligibility Decision for diazinon, U.S. EPA Doc. No. 738-R-04-006
  17. Wischmeier, W. H. and D. D, Smith. (1978) Predicting rainfall erosion losses - A guide to conservation planning, USDA Agriculture Handbook No.537
  18. 김균, 김정한, 박창규 (1997) 강우에 의한 농약의 표면유출 특성, 한국환경농학회지 16(3):274-284
  19. 김성수, 김태한, 이상민, 박동식, Zhu Yong-Zhe, 김성문, 허장현 (2005a) 실내 인공강우를 이용한 강원도 고랭지 토양의 토성 및 경사도별 농약 이동특성, 한국농약과학회지 9(4):316-329
  20. 김찬섭, 박병준, 임양빈, 류갑희 (2005b) 유기인계 및 카바메이트계 농약의 토양흡착성과 간이선발모형을 이용한 용탈 잠재성 평가, 한국환경농학회지 24(4): 341-349 https://doi.org/10.5338/KJEA.2005.24.4.341
  21. 김찬섭, 임양빈, 이희동, 오병렬 (2005e) 유기인계 및 카바메이트계 농약의 토주용탈과 대류이동성 모형에 의한 이동성 예측, 한국환경농학회지 24(4):350-357 https://doi.org/10.5338/KJEA.2005.24.4.350
  22. 한국작물보호협회 (2006a) 농약사용지침서
  23. 한국작물보호협회 (2006b) 농약연보