Distribution and Mobility of Herbicide $^{14}C$-Molinate in a Rice-Paddy-Soil Lysimeter

벼 재배 Lysimeter 환경에서 제초제 $^{14}C$-molinate의 분포 및 이동성 평가

  • Park, Byung-Jun (National Institute of Agricultural Science & Technology. RDA) ;
  • Kim, Chan-Sub (National Institute of Agricultural Science & Technology. RDA) ;
  • Park, Kyung-Hun (National Institute of Agricultural Science & Technology. RDA) ;
  • Park, Hyeon-Ju (Research Management Bureau, Rural Development Administration) ;
  • Im, Geon-Jae (National Institute of Agricultural Science & Technology. RDA) ;
  • Choi, Ju-Hyeon (National Institute of Agricultural Science & Technology. RDA) ;
  • Shim, Jae-Han (Division of Applied Bioscience and Biotechnology and Institute of Agricultural Science and Technology) ;
  • Ryu, Gab-Hee (National Institute of Agricultural Science & Technology. RDA)
  • 박병준 (농업과학기술원 농산물안전성부) ;
  • 김찬섭 (농업과학기술원 농산물안전성부) ;
  • 박경훈 (농업과학기술원 농산물안전성부) ;
  • 박현주 (농촌진흥청 연구개발국) ;
  • 임건재 (농업과학기술원 농산물안전성부) ;
  • 최주현 (농업과학기술원 농산물안전성부) ;
  • 심재한 (전남대학교 응용생물공학부) ;
  • 류갑희 (농업과학기술원 농산물안전성부)
  • Published : 2006.09.30

Abstract

This study was designed to assess molinate fate in the lysimeter by measuring the total radioactivity in the leachate, evolved $^{14}CO_2$, and $^{14}C$-residues in soil and rice plant. The amounts of applied $^{14}C$ in the leachate from the lysimeter for 20 weeks were 1.05% in 2.31 pore volume (217,465 mL) at the first and 0.34% in the second year, respectively. The amount of $^{14}CO_2$ evolved from the lysimeter accounted for 6.47% and 0.03% of applied $^{14}C$ in the first and second year. The $^{14}C$-activities in the soil layer of the lysimeter were distributed 18.0% (1st) and 13.3%(2nd) in the depth of 0 to 10 cm, 4.3 (1st) and 1.1% (2nd) in the depth of 10 to 20 cm. Most of the applied $^{14}C$ was detected in the top 20 cm soil layer. Total $^{14}C$ in rice plants grown at lysimeter were detected 11.46% of applied $^{14}C$. 11.11% in straw, 0.24% in brown rice grain, 0.08% in chaff and 0.03% in ears were distributed in the first year. Consequently, environmental fate of molinate using lysimeter simulating a paddy rice field were investigated 25.24% in soil, 11.64% in rice plant, 1.05% in leachate, 6.74% in evolved $^{14}CO_2$ and 0.02% in volatilized organic chemicals in the first year.

벼 재배환경 중 lysimeter를 이용하여 $^{14}C$-molinate를 처리한 후 20주 동안 조사한 결과 총 용탈수량은 lysimeter 토양의 2.31 pore volume인 217,465 mL 이었으며, 용탈된 방사능은 1년차 실험에서 1.05%, 2년차 실험에서는 0.34% 수준이었다. 지표면에서 방출된 $CO_2$ 양은 1년차 실험이 6.47%, 연속 실험한 2년차 실험이 0.03%로 약 500배 가량 감소되어 검출되었다. 토심별 방사는 분포는 1년차 실험의 경우 토심 $0{\sim}10cm$는 18.0%, $10{\sim}20$ cm은 4.3%로 분포되어 토심 20 cm 이내에 90% 이상이 분포하고 있었으며, 토양에 총처리 방사능의 24.8%가 잔류되었다. 또한 2년차 실험에서는 토심 $0{\sim}10$ cm는 13.3%, $10{\sim}20$ cm는 1.1%로 분포되었고, 처리 방사능의 18.0%가 토양에 잔류되었다. 수확 후 벼로 흡수 이행된 $^{14}C$-molinate의 방사능은 처리방사능의 11.46%이었으며, 그 분포는 볏짚 11.11%, 현미 0.24%, 왕겨 0.08%, 그리고 이삭이 0.03%로 주로 볏짚에 분포되어 광합성이 활발하게 일어나는 잎과 줄기에 축적이 많은 것으로 나타났다. 벼 수확 후 lysimeter의 표지물질의 종합적인 분포비는 최초 처리한 방사능의 25.24%는 토양에, 11.64%는 벼에 분포하였으며, 1.05%는 용탈수로 용탈되었고, 0.02%는 휘산성 유기화합물로 전환되었으며, 6.47%는 $^{14}CO_2$로 무기화되어 총회수율은 44.42%이었다. 처리 방사능의 55.58%는 소실되었는데 이는 주로 물중에서의 휘산과 수도체로 흡수 이행되어 휘산되었다.

Keywords

References

  1. Burauel, P. and F. Fuhr (2000) Formation and long-term fate of non-extractable residues in outdoor lysimeter studies. Environmental Pollution 108(1):45 - 52 https://doi.org/10.1016/S0269-7491(99)00200-6
  2. Burauel, P., A. Wais and F. Fuhr (1998) Soil-bond residue. Chapter 13. American Chemical Society
  3. Celis, R., L. Cox, M. C. Hermosin and J. Cornejo (1997) Sorption of thiazafluron by iron- and humic acid-coated montmorillonite. J. Environ. Qual. 26:472-479 https://doi.org/10.2134/jeq1997.00472425002600020019x
  4. Charles J. S., B. B. James and D. G. Crosby (1977) Dissipation of molinate in a rice field. Agri. Food Chem. 25:940-945 https://doi.org/10.1021/jf60212a022
  5. Deuel, L. E., F. T. Turner, K. W. Brow and J. D. Price (1978) Persistence and factors affecting dissipation of molinate under flooded rice culture. J. Environ. Qual. 7:373-377 https://doi.org/10.2134/jeq1978.00472425000700030016x
  6. Imai, Y. and S. Kuwatsuka (1982) Degradation of the herbicide molinate in soils. J. Pesti. Sci. 7:487-497 https://doi.org/10.1584/jpestics.7.487
  7. Imai, Y. and S. Kuwatsuka (1988) Residues of the herbicide molinate and its degradation products in pot soil and rice plants. J. Pesti. Sci. 13:247-252 https://doi.org/10.1584/jpestics.13.247
  8. Imai, Y. and S. Kuwatsuka (1984) Uptake, translocation, and metabolic fate of the herbicide molinate in plants. J. Pesti. Sci. 9:79-90 https://doi.org/10.1584/jpestics.9.79
  9. hnai, Y. and S. Kuwatsuka (1986a) Substrate specificity and induction of degrading activity for the herbicide molinate in three microbes isolated from soil. J. Pesti. Sci. 11:563-572 https://doi.org/10.1584/jpestics.11.563
  10. Imai, Y. and S. Kuwatsuka (1986b) The mode of metabolism of the herbicide molinate by four strains of microorganisms isolated from soil. J. Pesti. Sci. 11:111-117 https://doi.org/10.1584/jpestics.11.111
  11. Johnson, W. G. and T. L. Lavy (1995) Persistence of carbofuran and molinate in flooded rice culture. J. Environ. Qual. 24:487-493 https://doi.org/10.2134/jeq1995.00472425002400030015x
  12. Kim, I. S., L. A. Beaudette, J. H. Shim, J. T. Trevors and Y. T. Suh (2002) Environmental fate of the triazole fungicide propiconazole in a rice-paddy-soil lysimeter. Plant and Soil 239:321-331 https://doi.org/10.1023/A:1015000328350
  13. Kordel, W., M. Herrchen and W. Klein (1991) Experimental assessment of pesticide leaching using undisturbed lysimeters. Pesti. Sci. 31:337-348 https://doi.org/10.1002/ps.2780310308
  14. Marco V. and E. Funari (1995) Pesticide risk in groundwater. CRC press. USA
  15. Nicholls, P. H. (1988) Factors influencing entry of pesticides into soil water. Pestic. Sci. 22: 123-137 https://doi.org/10.1002/ps.2780220204
  16. Nolting, H. G. and K. Schinkel (1998) Lysimeter data in pesticide authorization. ACS Symposium Series 699:238-245
  17. Nordmeyer, H. and D. Aderhold (1994) Engineering and operation of a lysimter station for the estimation of pesticide leaching through soil profiles. Zeitschrift fur Pflanzenernahrung und Bodenkunde 157(2):93-98 https://doi.org/10.1002/jpln.19941570206
  18. Rudel, H., S. Schmidt, W. Kordel and W. Klein (1993) Degradation of pesticide in soil-comparison of laboratory experiments in a biometer system and outdoor lysimeter experiments. Science of the Total Environment 132(2-3):181-200 https://doi.org/10.1016/0048-9697(93)90131-O
  19. Schwarzenbach, R. P., P. M. Gschwend and D. M. hnboden (1993) Environmental Organic Chemistry. John Wiley & Sons Inc. Press, USA
  20. Steffens, W., W. Mittelstaedt, A. Stork, and F. Fuhr (1992) Thelysimeter station at the institute of radioagronomy of the research center Juelich GMBH (KFA). Lysimeter studies of the fate of pesticides in the soil. British Crop Protection Council, Monograph No 53:21-34
  21. Tomlin, C. (1997) The pesticide manual, 13th ed. Crop Protection Publication
  22. Williams, I. H., H. S. Pepin and M. T. Brown (1976) Degradation of carbofuran by soil microorganisms. Bull. Environ. Contam. Toxicol. 15:244-250 https://doi.org/10.1007/BF01685169
  23. (2005a) 논 토양 환경 중 제초제 molinate의 잔류성과 분해 특성. 한국농약과학회지 9(1):60-69
  24. 박병준, 최주현, 김찬섭, 임건재, 오병렬, 심재한 (2005b) 벼 재배 환경 중 molinate의 휘산과 공기중 고추약해 발현 농도. 한국농약과학회지 9(1):70-80
  25. 조성진, 박천서, 엄대익 (1992) 삼정토양학. 향문사