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ABSTRACT-This paper proposes a hybrid analytic method for the prediction of vibrational and acoustic responses of
reverberant system in the medium-to-high frequency ranges by using the PFA (Power Flow Analysis) algorithm and SEA
(Statistical Energy Analysis) coupling concepts. The main part of this method is the application of the coupling loss factor
(CLF) of SEA to the boundary condition of PFA in reverberant system. The hybrid method developed shows much more
promising results than the conventional SEA and equivalent results to the classical PFA for various damping loss factors
in a wide range of frequencies. Additionally, this paper presents applied results of hybrid power flow finite element
method (hybrid PFFEM) by formulating the new joint element matrix with CLF to analyze the vibrational responses of
built-up structures. Finally, the analytic results of coupled plate structures and an automobile-shaped structure using hybrid

PFFEM were predicted successively.

KEY WORDS : Power flow analysis, Statistical energy analysis, Coupling loss factor, Power flow finite element method,
Reverberance factor, Hybrid power flow finite element method

1. INTRODUCTION

Recently, as vehicle structures have gradually decreased
in weight and increased in speed, there has been an
increase in the concern for structural/acoustic dynamic
responses in the medium-to-high frequency ranges. Much
of the current structural vibration analyses have been
done by using the traditional finite element method
(FEM). However, to properly model high-frequency
vibrations, the order of the shape functions in FEM must
be increased or the size of the mesh decreased. Therefore,
traditional finite element models are disadvantageous to
performing accurate high-frequency analysis because
they become too large for efficient application (Wohlever
and Bernhard, 1992).

Additionally, the FEM is essentially a deterministic
analysis technique. The method requires all the data for a
problem to be known exactly. At low frequencies, the
data such as material properties and joint behavior are
reasonably well known and the solution is not highly
sensitive to typical variations of these data. However, at
high frequencies, the required data for structural dynamic
problems are uncertain, and thus, the solution is highly
sensitive to data variations. Therefore, at high
frequencies, the statistical approach for analyzing
structural and acoustic responses is more appropriate than
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the deterministic one.

Statistical Energy Analysis (SEA) has become a widely
accepted technique for modeling dynamic responses of
vibro-acoustic systems of high modal density. In SEA,
each component of a built-up system is treated as a
statistical population of mode groups and the average
dynamic response of component parts is calculated (Lyon
and Dejong, 1995). Therefore, the analytic model for
SEA compared with that for a common FEA is very
simple. However, because assumptions are simplified in the
development of SEA, the analytic results are not
sufficiently reliable in the low-to-medium frequency
ranges. Additionally, SEA gives no information about the
spatial distribution of dynamic responses within a given
subsystem.

Power Flow Analysis (PFA) has been understood to be
one of reliable methods, and has remarkable advantages
compared to other analytic tools for acoustic and
vibrational analysis in the medium-to-high frequency
ranges. PFA models the flow of mechanical energy in a
manner analogous to the flow of thermal energy in heat
conduction. Because the energy governing equation is
partial differential equation on space, PFA can give
information about the spatial variation of energy density
as well as intensity (Cho, 1993).

Power Flow Finite Element Method (PFFEM) is a
numerical analytic tool which applies finite element
technique to PFA for the vibrational analysis of built-up
structures in the medium-to-high frequency ranges.
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PFFEM can be effectively used to analyze vibrational and
acoustic responses of built-up structures with sufficiently
coarse mesh compared with the FEM at high freqneucies
(Manning, 2005; Zhang et al., 2005). Additionally,
PFFEM has been lately used for the design optimization
using PFA at high frequencies (Chuang et al., 2005).

As many researchers have developed SEA since 1959,
SEA has much information, especially about the coupling
data, which is very important in the analysis of built-up
structures and has some commercialized softwares/
hardwares calculating SEA parameters. This coupling
information can be used efficiently in an alternative
method based on energy. In particular, the comme-
rcialized NVH software based on energy must support
the functions that simulate with the use of experimental
parameters to increase the accuracy of analytic results. In
this case, the coupling loss factor (CLF) of SEA, which is
easier to be obtained, can be used as very efficient
information. In relation to these, Langley showed a simple
methodology which uses CLF in PFA boundary condition
about one kind of motion in a two-dimensional structure
for the different object (Langley, 1995).

In this paper, the general algorithm for the use of CLF
in PFA boundary condition is presented. Formulation
using CLF in PFA boundary condition was developed to
cover the all degrees-of-freedom of one-, two-, and three-
dimensional cases, and was proven to be valid through
numerical analyses of each dimensional case. Additionally,
the new joint element matrix using CLF for the Power
Flow Finite Element Method (PFFEM) was developed to
extend the application area of the developed hybrid
method to built-up structures. To verify its validity and
accuracy, numerical analyses of coupled plate structures
were performed in various conditions. Finally, using the
developed hybrid PFFEM, the numerical applications for
a simple automobile-shaped structure were represented.

2. FORMULATION OF HYBRID BOUNDARY
CONDITION IN POWER FLOW ANALYSIS

2.1. One-dimensional Case

The equation of motion for the uniform Bernoulli-Euler
beam excited by a transverse harmonic point force is

4
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where E. = E(1+jn) is the complex modulus of
elasticity, / is the moment of inertia, p is the density, S is
the sectional area, w is the transverse displacement, 77 is
the hysteretic damping loss factor and F is the harmonic
flexural point force applied at point x,. The general
solution of equation (1) is
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where is the complex wave number defined by the
expression

k= (25, ®

in which ¢, = 4/0’El/pS is the phase velocity of
flexural wave in the beam.

Goyder et al. (1980) have shown that the far-field
component of energy and power by transverse
displacement in equation (2) is dominant to the near-field
component at high frequencies. Therefore, in lightly
damped structures, ie., 77<<1, if near-field terms of
transverse displacement are neglected, the relationship
between the time- and locally space-averaged “m”-type
far-field energy density and power can be approximated

by (Wohlever and Bernhard, 1988)
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where abbreviations “f” and “I” denote flexural and
longitudinal wave respectively.

By the principle of energy conservation in steady state,
the energy governing equation which takes the time- and
locally space-averaged “m”-type far-field total energy
density as a primary variable can be derived by
(Wohlever et al., 1992)

Cond’ <e>m
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where I1;, ,, is the input power of “m”-type wave, ¢, =2
(@EllpS)™ and c,, = JE/p. The general solution of
equation (2.5) is represented as

(e)m = AXexp(—Wnx)+ BXexp(¥,x), 6)

where ¥, = N@/c,,. In equation (6), the time- and
locally space-averaged far-field energy density solution is
composed of not propagating wave components but
exponentially decaying wave components. Additionally,
the value of ¥, in equation (6) implies the decay rate of
“m”-type energy density per unit length. Therefore, the
reverberance factor (R,, = ¥,.L) of “m”-type wave field
in a subsystem can be expressed by multiplied by the
characteristic length (L) of the subsystem and is related to
the exciting frequency, group velocity and characteristic
length besides damping loss factor of the subsystem. If
the reverberance factor K,, of the subsystem is zero, the
“m”-type wave field of the subsystem is completely
reverberant ({e),= constant).

Generally, if the hysteretic damping of a structural
subsystem is very small (77 << 1) like that of the metal,
the size of a subsystem is not very large, and the exciting
frequency is not very high, energy density will vary
slightly within the subsystem. Therefore, except the
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subsystem which external force is loaded in this case, the
assumption that the energy density in a subsystem is
constant, that is reverberant, will not be unreasonable.

Here, if the energy density field in each beam is
assumed to be reverberant and the system contains a
modal overlap, the power which is transferred from the
energy of “m”-type waves in beam 1 to “n”-type waves
in beam 2 can be expressed as

Hlmﬁ)Zn = wanmnElm = w7712anl<e>1m’ (7)

where 1),,,, is the coupling loss factor from the energy of
“m”-type wave in beam 1 to the energy of “n”-type wave
inbeam 2, E,,, is the total energy (J), {e},,, is the energy
density (J/m) of an “m”-type wave in beam 1, and L, is
the length of beam 1. The coupling loss factor of point
junction in equation (7) is known as

7712mn —_ Cglm<z>12mn (8)

2wl,

where c,,,, is the group velocity of “m”-type wave in
beam 1 and (7)i2,, is the diffuse power transmission
coefficient of “n”-type wave in beam 2 due to the
incident “m”-type wave in beam 1. By equations (4) and
(8), the net power of a “m”-type wave may be
represented as

cid{e)
— —glmE AT Um_ —
Hlmzn 7710) dx n;[(nlmabz H2n~>lm) (9)
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The upper equations (9) and (10) represent the hybrid
boundary condition mixing the concept of power flow
analysis with that of statistical energy analysis, using the
power transfer relation in reverberant field. That is to say,
using the advantages of each method, the concept of
power flow analysis such as equation (5) is used within
the homogeneous domain and that of statistical energy

Beam 1

Figure 1. Power flow model for two beams joined at an
arbitrary angle.

analysis such as equations (7)~(10) in the boundary.

However, if the hysteretic damping of a structural
subsystem is not small, the size of a subsystem is very
large, or the exciting frequency is very high, the energy
density in its subsystem will vary greatly and its field will
be not reverberant any more due to large reverberance
factor. In this case, the energy density and power values
in the boundary cannot represent those averaged in the
full subsystem. Therefore, the hybrid boundary condition
at the joint of these highly damped structures may
generate more error than the classical boundary condi-
tion. In a general field, the classical boundary condition
in power flow analysis fully using the power transmission
and reflection coefficients derived by wave transmission
approach is expressed as follows

<q>;f = <712/f><‘1>:/ + <}/22ﬂ><q>;f + <lezf><‘1); + <7221f><q>;1 )
<q>l_f <711ﬁ><q>:/ + <’2Iﬂ><‘1);f + <7llv><q>:1 + <7211f><q>;1 >
<q>;1 <T‘Zﬂ><q>:f + <722ﬂ><‘1>;f + <T|211><q>1+z + <722"><‘1>;1
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{a), = (7”ﬂ><q>l+f +<’zxﬂ><q>;/ +(Hu)@hy {72 ) (@) 5
(1)

where (g); and (gq)] are the flexural and longitudinal
powers in the positive direction, respectively, and all the
powers are the values in the boundary.

Numerical examples

To verify the usefulness of the new hybrid boundary
condition on one-dimensional problem, this boundary
condition was numerically applied to three finite beams
joined at arbitrary angles as shown in Figure 2. To
consider the arbitrary case, the dimensions of beams are 2
m X 0.01m x 0.0lm, 2m X 0.03m x 0.03m and 2m X
0.03m x 0.03m (IxBxH) respectively. Beams 1 and 2 are
made of steel and beam 3 of aluminum. The angle 6,
between beams 1 and 2 was assumed to be 45° and 6
between beams 2 and 3 to be —45°. The magnitude of the
applied transverse point force in the center of incident
beam is 100N. The time-averaged input power can be
calculated as follows:

1 jor 0—)W(x0) '
H,-n = ERC{(FE )X(T) }, (12)

where w(x,) is the transverse displacement at the loading
point.

For the first model, the hysteretic damping values of
all beams were assumed to be 77 = 0.1 . For the second
model, to consider the effect of reverberance factors, the
structural damping values of all beams were changed into
7 = 0.001 corresponding to the value of common
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Figure 2. Three finite beams jointed at arbitrary angles.
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Figure 3. Flexural energy density distribution of first
model when f=5kHz and 7=0.1 (R;=4.67, R,=2.69,
R;=2.67). ‘—, hybrid PFA solution; ‘----’, classical
PFA solution; ¢« >, exact solution.

metals. The detailed procedure of numerical analysis for
the one-dimensional case is discussed in Appendix 1.
Figures 3-6 show the numerical results that are
obtained using each boundary condition in all joints for 1/
3 octave band with for the first model. In this model, the
reverberance factors of flexural and longitudinal wave
fields in each beam are R;=4.67, R,=2.69, Ry=2.67,
R,u=1.26, R,,=1.26, and R;=1.23, respectively. As
expected, the flexural energy density of exact solution
decreases universally with increasing distance from the
excitation location and fluctuates locally in space,
especially near the ends of the beams and the junction in
Figure 3. The flexural energy density of power flow
solutions, which are obtained using the classical and
hybrid boundary conditions at the joints, varies smoothly
in space without any fluctuation and has a discontinuity
line at the junction. The exact solutions fluctuate in the
vicinity of the smoothed results of the power flow
solutions obtained by using the classical and hybrid
boundary conditions. The results of power flow solutions,
which are obtained by using the classical and hybrid
boundary conditions, nearly agree with those of the exact
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Figure 4. Longitudinal energy density distribution of first
model when and 7=0.1 (R;=1.26, R,=1.26, Rp=
1.23). ‘—, hybrid PFA solution; ‘---", classical PFA
solution; ¢.-----*, exact solution.
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Figure 5. Flexural power distribution of first model when

and 7=0.1 (Ry=4.67, Rp=2.69, Rp=2.67). —,

hybrid PFA method; ‘-----’, classical PFA solution; ...,

exact solution.

solutions. However, because of large structural damping
value (n=0.1), the difference between results that were
obtained by using the classical and hybrid boundary
conditions increases as the distance from the excitation
location increases. This tendency in the results is also true
for the flexural energy as well as the longitudinal energy
(Figure 4), the flexural power (Figure 5) and the
longitudinal power (Figure 6).

For the second model, Figures 7 and 8 show the
numerical results of classical power flow solutions,
hybrid power flow solutions, and classical SEA solutions,
which are obtained by using each boundary condition in
all joints for 1/3 octave band with f=5 kHz and
7=0.001 . The reverberance factors of each wave field in
the second model are one hundred times as small as those
in the first model due to small damping loss factor.
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when f=5 kHz and #7=0.1 (R,=1.26,R,=1.26,
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Figure 7. Flexural energy density distribution of first model
when f=5 kHz and 7=0.001 (R,=0.0467, R,=0.0269,
R»=0.0267 ). “—, hybrid PFA solution; ‘-----’, classical
PFA solution; ¢« >, SEA solution.

Because the hybrid boundary condition is equivalent to
the classical boundary condition when 7=0 (R,,=0), the
power flow solutions that are obtained using the hybrid
boundary condition, become equal to those that are
obtained by using the classical boundary condition, as the
reverberance factor R,, decreases. Corresponding to these
expectations, Figures 7 and 8 show that the results that are
obtained by using two boundary conditions agree well
because the reverberance factors of this model became
smaller.

To confirming these results, Figures 9 and 10 show
the effects of reverberance factors in flexural and
longitudinal energy densities using each boundary
condition. The relative differences in the results shown in
Figures 9 and 10 are the values of the difference between
the averaged energy density using the classical boundary
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Figure 8. Longitudinal energy density distribution of
first model when f=35 kHz and 7=0.001 (R;=
0.0126, R,=0.0126, R;;=0.0123). ~—, hybrid PFA
solution; ‘-+-+-", classical PFA solution; ¢......>, classical
SEA solution.
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Figure 9. Relative difference (|E.-E,|/|E|) of space-
averaged flexural energy densities by two methods in
beam 3 as the reverberance factor variation of beam 1.
o, Ru=467x107, =x=7 Ry=4.67x10°;
—A=, Ry =467X107; -0, Rpy=4.67 x 107 ~I—,
Ry= 4.67x107% ~V=, R,=4.67x107; —>—,
R, =4.67x107; <=, Ry=4.67x107; =0,
Ru=4.67x 107 ; =0, Ry =4.67.

condition and hybrid boundary condition, divided by the
averaged energy density using classical boundary
condition (|Es,rassie — Es ayprid| /| Es. ctassic] ) in beam 3.

As expected, the relative differences of energy
densities using two boundary conditions approaches zero
as the reverberance factors decrease. Therefore, if the
reverberance factor of a subsystem is small, the power
flow analysis using the hybrid boundary condition will be
effective.
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Figure 10. Relative difference (|E. - E,
averaged longitudinal energy densities by two methods in
beam 3 as the reverberance factor variation of beam 1.<——’,
Ry=1.26x 107, ‘=x="; R,y=1.26 x 10°; -2, R,
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10% =V=", Ry=1.26 X 107 ;- >~", R =1.26 x 107 ;
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=07, R, =1.26.

2.2. Two-dimensional Case

Two-dimensional case obtained by expanding the hybrid
algorithm of one-dimensional case will be considered. As
an example of two-dimensional case, the energy govern-
ing equations of flexural, longitudinal, and shear waves
in a thin homogeneous finite plate are expressed,
respectively (Park ez al., 2001).

%V2<e>m+ naie, =0 (m= f,1,s), (13)

where V? means two-dimensional Laplace operator.
For each wave in the plate, the relationship of the time-
and locally space-averaged far-field total energy density

A

Figure 11. Power flow model for two plates coupled at an
arbitrary angle

and intensity using the similar algorithm can be repres-
ented as

> _:7_ )
@n = S2(L3e D)o m= £ (b

In the classical power flow analysis, the boundary
conditions expressed by diffuse power transmission and
reflection coefficients and intensity values in the joint of
the model shown in Figure 11, can be written as
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s

2
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<T|2:s <q1x :

%x <7|2ﬁ><q lel.v <q >

)
(P ) (@), + (P ) (@) + (P} (),
(15a-9)

Like the previous one-dimensional problem, the
reverberance factor (R,=y,L) of “m”-type wave field
in a two-dimensional subsystem can be defined by ,
multiplied by the characteristic length of the subsystem
L. If the reverberance factors of plates are small, the
hybrid boundary condition for plate structures can be
derived because the value of boundary can represent the
averaged value of one subsystem. Therefore, the power
per unit length of the line junction which is transferred
from plates 1 to 2 can be expressed by equation (16),
using the coupling loss factor of SEA,

Moy = 2200 (16)

where §; is the area of plate 1, 7, is the coupling loss
factor from the energy of a “m”-type wave in plate 1 to a
“n”-type wave in plate 2, L is the length of the line
junction, and {e;), is the energy density (J/m®) of the
“m”-type wave in plate 1. Here, the coupling loss factor
of line junction in the plate is known as
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where ¢, 18 the group velocity of the “m”-type wave in
plate 1, L is the length of line junction among plates, and
S, is the area of plate 1. Using equations (14), (16) and
(17), the net power of the “m”-type wave from plates 1 to
2 is represented as

sz >
0. = —_flz’v<e>1m'n = Z Q| PO § PR

77 n=f1s
= Y T i en = Sothumex),) and (18)
n=f1ls
C22 ke
i, = —;;;(ﬂov<e>2m'n = Z Q| FRCTES § PSS
n=f1s
= Z %)(Slnllmn<el>n_S2n21mn<e2>m) (19)
n=f1ls

2.2.1. Numerical examples
The numerical applications of hybrid method for the

Figure 12. Three finite plates joined at arbitrary angles.
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Figure 13. The comparison of flexural energy density
using the classical and hybrid boundary conditions when
f=5%kHz and 7=0.01.

two-dimensional case are performed for three finite
rectangular isotropic plates joined at arbitrary angles and
excited by a transverse harmonic point force, as shown in
Figure 12. The dimensions and thickness of the structure
are L,=Lo=L,=L,=lm and h=1 mm, respectively,
and the material properties of the structure are assumed to
be the same as those of aluminum (E=7.1x 10'°Pa,
p=2700 kg/m’). The transverse force is located at
x=L,/2 and y=L/2 in plate 1 and its amplitude is
F=1 N. The angles 6, and & between two plates are 90°
and —90° respectively.

Comparison of Flexural Energy Density(y=Ly/2)

..... Classical Boundary
—— Hybrid Boundary

951

Energy level {dB)

90+
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Figure 14. The comparison of flexural energy density
using the classical and hybrid boundary conditions when
f=5kHz and 77=0.0001.
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Figure 15. Relative difference (|E.-E,|/|E]) of space-
averaged flexural energy densities by two methods in
plate 3 as the reverberance factor variation of plate 1. ‘—,
R,=1.0028, ‘- x-"; R,=1.028; ‘= A", R,=028;
~ 0=, R, =2.8; —I-, R, =28,
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Relative difference of in-plane energy density as reverberance factor variation
10 —— T

Relative difference of energy density(f|E _ - E IMIE I}
3

S ¢
Reverberance factor(RF,, , RF ;)

Figure 16. Relative difference (|E, - E,||/|E.| ) of space-
averaged in-plane energy densities by two methods in
plate 3 as the reverberance factor variation of plate 1.
—, R,=0.0002, ‘= x -7 R,=0.002; ‘-2, Ry
=0.02; ‘-0 -, R, =0.2; ‘-, R, =2.

The detailed procedure of numerical analysis for the
two-dimensional case is discussed in Appendix 2.
Figures 13 and 14 show the comparison of the power
flow solutions between those obtained by using the
classical and hybrid boundary conditions in 7=0.01
(R;=1.001, R,=8.18x107, R,=141x10") and 7 =
0.0001 (R,=1.00x 107 R,=8.18 x 107, R, =1.41x
107), respectively. These figures show that the hybrid
boundary condition is equivalent to the classical one for
small reverberance factor.

Figures 15 and 16 definitely show the effects of
reverberance factors of each plate in the hybrid boundary
condition, by using the hybrid boundary condition at all
joints. The results in Figures 15 and 16 are the relative
differences (| E; ciusic = Es myoridl /| En ctassid] ) of *space-
averaged flexural and longitudinal energy densities of
plate 3 using the classical and hybrid boundary conditions
for various structural damping values, respectively. Like
the one-dimensional case, as the reverberance factors of
plates decrease, the energy density levels using two
boundary conditions become equal.

2.3. Three-dimensional Case

To extend the scope of the application of hybrid boundary
condition, the acoustic wave in enclosures will be
considered as the three-dimensional problem. Bouthier et
al. (1992) found the second-order energy differential
equation for the propagation of acoustic waves in
damped medium,

(9 9 9
77%(5 v e 31_) (€)a+ Nw{ee= M, (20)

where (e), is the time- and locally space-averaged far-

Cavity 3

[
»

A
4
Al

TR LxJ

Figure 17. Acoustic cavities joined without partitions.

field acoustic energy density, and II,,, is the power
injected by a sound source. The damping loss factor in an
acoustic medium is defined as

n = o, (21

where 7 is the relaxation time. The relaxation time
models the delay between the application of a sudden
pressure change and the resulting equilibrium condensa-
tion. The time- and locally space-averaged far-field
acoustic intensity is related to the time- and locally space-
averaged far-field acoustic energy density by

> 2
D = 727%)(%’,-4, (%% a%ii) (€}, (22)

where c,, is the group velocity for acoustic waves in
gases. The group velocity for acoustic waves is same as
the phase speed and is given by

o= C = JEO, 23)
Po

where 7 is the ratio of the specific heats of the gas at
constant pressure to the specific heat of the gas at
constant volume, P, is the standard pressure, and p, is the
density of various gases (Cho, 1993). Figure 17 shows
the power flow model for three acoustic cavities of
different acoustic properties. In the model shown in
Figure 17, regardless of the acoustic reverberance, the
classical boundary conditions of power flow solutions for
acoustic wave, which is used in classical power flow
analysis, can be expressed as

@iz = T2l @i+ ¥2{ @), and
(@ar,x = 'Yll<q>21,x + Tu{Qaz s

where (g). . is the intensity of the acoustic wave in the
+x -direction and 7 and ¥ are the diffuse power
transmission and reflection coefficients of acoustic
waves, respectively. Here, the same assumption as the
previous cases can be applied. Because the damping loss
value of real acoustic medium is very small (7 << 1) like
that of the air (O(10™)), the energy density does not vary
greatly in a small acoustic cavity. Therefore, like the
previous cases, except for the case that the cavity was
loaded acoustically, the assumption that the energy
density field in an acoustic cavity is reverberant ( (e¢) =

(24a)
(24b)
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Figure 18. Acoustic energy density levels along the plane
z=0.L, when f=5 kHz, 17=0.001 and 7,=7,=0.0005:
(a) Using the classical boundary condition at all area
Junctions; (b) Using the hybrid boundary condi-tion only
at x=2m.

constant) will be reasonable. If the energy density field in
each acoustic cavity is assumed to be reverberant, the
power per unit area transferred from the energy of
acoustic waves in cavities 1 to 2 can be expressed as
equation (25), which uses the coupling loss factor of
SEA,

Hla——>2a = -a—)‘/lng;m, (25)

where V| is the volume of acoustic cavity 1, 7, is the
coupling loss factor from cavities 1 to 2, S is the area of
area junction between acoustic cavities, and {e,), is the
energy density (J/m’) of acoustic wave in cavity 1. The
coupling loss factor for area junction in acoustic cavities
is known as

G S (T
= St 26)

where (7),, is the diffuse sound power transmission
coefficient between cavities 1 and 2. The net power of the
acoustic wave from cavities 1 to 2 using equations (22)
and (25) and the coupling loss factor may be represented
as follows:

le = (HlﬁZ_H2—>l)
2

) > 2 >
= %V@%a ‘h= ‘f}%v@ha L

= %J(Vl Maerys— Vol {e.).

@7

Numerical examples

The numerical applications of hybrid method for the
three-dimensional case are performed for coupled three
acoustic cavities, as shown in Figure 17. Each cavity has
the same dimension of L,=L,,=L.;=L,=L=1m. The
acoustic properties of each cavity were assumed to be
p=1.3 kg/’, ¢,=330 m/s, p=1.35 kg/m’, ¢,=340 nv/s
and p,=1.37 kg/m’, ¢;=350 m/s. Acoustic power is input
at x,=L,/2, y=L,/2 and z=L/2 in cavity 1 and its
magnitude is P=1W. The detail procedure of numerical
analysis is discussed in Appendix 3. Figure 18 shows
three-dimensional power flow solutions along the plane
z=0.5L, when the exciting frequency is f=5 kHz. Figure
18(a) is the power flow solution using the classical
boundary condition given in equation (24) in all area
junctions and Figure 18(b) is that using the hybrid
boundary condition given in equation (27) only in the
junction of x=2m. In both solutions, acoustic damping
loss factors of cavities 1, 2 and 3 were assumed to be
17,=0.001 and 7,=17,=0.0005, respectively.

Therefore, the reverberance factors of each acoustic
cavity are R,;=1.6489, R,,=0.16 and R,; =0.1555. The
diffuse acoustic power transmission and reflection
coefficients used in two area junctions are evaluated
numerically.

As expected, in Figure 18, the acoustic input power in
both cases using each boundary condition propagates
well from cavities 1 to 3, with spatial variation of energy.
In addition, the difference of energy densities by each
solution in cavity 3 is about 0.4dB at maximum due to
small reverberance factors. The effects of reverberance
factors of acoustic cavity in the hybrid boundary
condition are confirmed by the relative difference
between space-averaged acoustic energy densities of
cavity 3 under the classical and hybrid boundary
conditions as the reverberance factor variation of
cavities 2 and 3. In Figure 19, the hybrid boundary
condition is applied only in the area junction between
cavities 2 and 3. Similar to the previous cases, according
as the reverberance factor decreases, the power flow
solutions using two boundary conditions become
equivalent.
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Reiative difference of acoustic energy density as reverberance factor variations (R o1 = 1.65)
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Figure 19. Relative difference (||E.-E,||/|E|) between

space-averaged acoustic energy densities of cavity 3, using
the classical and hybrid boundary conditions as the rever-
berance factor variation of cavities 2 and 3 in R, =1.65.

3. HYBRID POWER FLOW FINITE ELEMENT
METHOD

3.1. Hybrid Boundary Condition for PFFEM

For power flow analysis of built-up structures, the
numerical approach for energy governing equation is
required. Cho (1993) presented the finite element formula-
tion for the one-dimensional energy equation by considering
multi degrees-of-freedoms and two-dimensional energy
equation by considering one degree-of-freedom. Seo et
al.(2000) expanded into the general finite element
formulation for two-dimensional case. Seo and Park
(2003) developed the software for vibration analysis,
PFADS (Power Flow Analysis Design System), based on
PFFEM. This paper represents the general hybrid power
flow finite element formulation using coupling loss factor
in SEA. As known, to apply the hybrid boundary
condition to PFFEM, the derivation of new joint element
matrix used for linearization of the global matrix
equation in PFFEM is required.

To develop the hybrid power flow finite element
formulation of two-dimensional energy equation, the
weak variational form of the energy governing equation
for the propagation of “m”-type wave is obtained and by
Galerkin weighted residual method, the following
equation is obtained;

i{jp(%%}vgpi Vg + na;q),.(p,)du}e,
(28)

= .[DHm¢idD+ jr¢,{(—n)-<}>m}dr,

where ¢ is the basis function for energy approximation

({&)w= "3 €;¢), n is a unit vector normal to the domain
j=1

boundary I' and the “m”-type intensity in the boundary

> .
is <I>,,, = —c5,V {e),/ nw.Equation (28) can be written
in element matrix form as

[K9)1e“} = {F}+ {0}, (29)

where

Kf:,)ij = J‘D(%%)V@ Vg + 770)¢,-¢,)dD,

IDH,,,¢,~dD and
= J;-¢’{(_n) <}>m}dF

The negative sign of Q' term means the net power
flux of the inner-direction of element. When element
matrix equations of all elements are acquired, the global
matrix equation has to be assembled to solve the linear
equation. The global matrix equation for two-dimensional
cases can be represented as

[(K]{e} = {F}+{Q}. (30)

First of all, if the only terms about one degree-of-freedom
are considered, the matrix {Q}, a global power flow matrix,
includes the differential terms of energy density and can
be expanded to

{Q.} = {00, 007", Y, €1y

where

k (k) (k
fn) = {ley R m)

{j(bﬁ"’qﬁf’ dry, -, jq)i,")qi,i”dl“k} and (32)

(e)
Fm,i

Tk T
(k+1) (k+1) (k+ 1)
m = {le IR mn
(k+1) (k+1) (k+1) (k+1)
= { J‘ ¢1 qm drk+15 R I (bn qm drk+1}'
1“k+1 T

k+1 (33)

In equations (32) and (33), O\’ and Qu"" are the
“m’-type boundary energy flux vectors of for two
adjacent boundary elements, k£ and k+1, lying on the line
joint of two elements. Here, considering the hybrid
boundary condition given in equations (18) and (19), the
joint energy flow equations can be expressed as, using
coupling loss factor in SEA,
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Figure 20. Two 4-node quadrilateral elements for hybrid
power flow finite element method.
® _
9n = Do+ —Piog+1y
w (% i+ and
= E{“ S(k) Nk + l)mmem) + S(k+ M+ 1)(k)mmefn 1)}

(34)
(k+1)
qn = P+ — P+

N 35
L_z{S(k)n(k)(k+l)mme£n) ¢ 1)}, (3%

=S+ 1 der DY (RymEm

where efnk,),- is the nodal value of “m”-type energy in the

boundary element k, S, is the area of the element
including boundary element &, L is the total length of line
junction and 7+ 1ymm 1S the coupling loss factor between
“m”-type energies of the element including boundary
elements & and k+1.

The values of energy density in the boundary element
can be approximated by

‘“—z@%, (36)

where e\, are nodal values of “m”-type encrgy density of
the boundary element, ¢ are the basis function, and the
integer n, is the number of the basis function.

Qm

Smmk)xmmnz‘,k (k><§¢ [ drj““smn’mm kymm [ ‘M)q¢ [ dr]
o[

Sttty [ mq'i’ ¢ dl“} St siyiymm [ (M‘q“ﬁ ¢ drj

(37

To illustrate the global matrix assembly procedure, the
example shown in Figure 20 is considered. In Figure 20,
the global nodes are not real finite clement nodes. In a
common finite element model, the model composed of
two coupled quadrilateral elements is modeled with six
nodes. However, because the discontinuity of energy
density occurs in the coupled line junction, two virtual
nodes have to be added in PFFEM and the numbers of
total nodes are renumbered as shown in Figure 20. In
case of the example shown in Figure 20, equation (37)
can be expressed as, with the nodal values of the

boundary nodes, that is, nodes 3, 4, 6 and 5,

(1) (2
0., sy [113 16 s |13 V6] fe .,
0., ol hamn ) 116 173 :x) Thimnl 160 1/3 e;zl) [J] e,
0. I 173 1/6]{e 13 16]e®) [ Pl
S € -S.7, m2
0. hamn 176 1/3 m |y r6 173 o e,

(3%

where [ is the length of line junction between elements.
To consider the case of full degree-of-freedoms in the
plate, equation (37) can be expanded into

Teneton { ,”<§¢ ¢er }}
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|
2 w,«fwf
|

e nwm
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{Q‘/’ | \}

”
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Ql»‘oh e L
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(39

where uyw. 1ymp 18 coupling loss factor from the “m”-
type energy in the boundary element k to the “p”-type
energy in the boundary element k+1. Using equation (39),

equation (38) can be expanded as

o fs;[,Zm@)mJ Sa,0m) o Snrd 0 sl ||
0. et L -
0, S, ) «zs;[/z%‘,)m] S lm) 0 St 0 s
Q‘ pref 45 e/ 5
° 0 s lm) <S[Zuu,}m Sfm) 0 s ||%
Q| peids A
- '
E
¢ ot 0 s S LZQV,}"!I S o b
Q« of L (3]5
q &
o v S0 0 sl S Dyl s ||
Q ST Ga
e €6
) S, ) 0 S} 0 Snim) Z% i e,

(40)

where [m,] and [m,] can be represented as [m,]=[m,]=
éE ;:I with the length of boundary in element /. Joint

element equation (40) can be expressed as simply

o €
{Qz} = [J]{ez}. 41)
0, e;

The global matrix equation can be assembled as

K; € 11,
K, -[J] {ez} = {Hz} (42)
K e, I1,

s
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Figure 21. Finite element model of coupled plates for
hybrid PFFEM.

3.2. Numerical Examples

To validate the new joint element formulation for
PFFEM using the hybrid boundary condition, the simple
model of two coupled plates is applied. The dimensions
and thickness of the structure shown in Figure 12 are
L,=L,=L=0.5m and h=10 mm, respectively, and the
material properties of the structure were assumed to be
the same as those of aluminum (E=7.1x10" Pa, p=2700
kg/m®). The force position is located at x=L./2 and
¥=L,/2 in plate 1 and its amplitude is F=100N. The angle
between two plates is 90°. The damping loss factors for
all plates were assumed to be 0.01. Figure 21 shows the
finite element model of a coupled plate structure for
numerical applications. The finite element model shown
in Figure 21 has 800 elements, 882 nodes and 2646 dofs.
Figure 22 shows the comparison of the analytic power
flow results by exact solutions and the numerical power
flow results by hybrid PFFEM, respectively, in the line
y=LJ2 when f=10 kHz. As expected, the numerical
results of hybrid PFFEM agree well with those of
the analytic results using the hybrid concept. By
these results, the new joint element matrix for hybrid
PFFEM was validated successively. Like the tendency
in the results of previous examples, as the reverberance
factor of structural subsystem decreases, the results of
the hybrid power flow finite element solution will
become equivalent to those of the classical power flow
solution.

Additionally, to expand the application region of hybrid
PFFEM to built-up structures, an additional example is
presented. Figure 23 shows the finite element model of
an automobile-shaped structure, which is composed of
706 nodes, 704 elements and 2616 dofs. The material
properties were assumed to be those of steel and the
thickness of all plates is 0.001m. Figures 24 and 25 show
the analytic results of hybrid PFFEM and classical
PFFEM, respectively, when f=200 Hz and 7=0.0001.

Comparison of PFFEM and PFA using Hybrid Method
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Figure 22. The comparison of analytic PFA and hybrid

PFFEM when 10 kHz and 7=0.01: (a) flexural energy;
(b) longitudinal energy; (c) shear energy.
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Figure 23. Finite element model of an automobile-shaped
structure for hybrid PFFEM.

(®)

Figure 24. Energy density levels (dB) of an automobile-
shaped structure by hybrid PFFEM when 200 Hz and 7=
0.0001: (a) flexural energy density; (b) in-plane energy
density.

Additionally, Figures 26 and 27 show the analytic results
of hybrid PFFEM and classical PFFEM, respectively,
when f=500 Hz and 7=0.01. Since the reverberance
factor of Figures 24 and 25 is 250 times as large as that of
Figures 26 and 27, the difference between the results of

(b)

Figure 25. Energy density levels (dB) of an automobile-
shaped structure by classical PFFEM when 200 Hz and
7=0.0001: (a) flexural energy density; (b) in-plane
energy density.

Figures 24 and 25 is much smaller than that between the
results of Figures 26 and 27. In Figures 24 and 25, the
results of two methods show good agreement and their
difference is not more than 1dB. Figure 28 shows the
relative difference between classical and hybrid PFFEM
in the measuring point shown in Figure 23 as various
reverberance factors of the measuring subsystem. Like
the previous cases, as the reverberance factor decreases,
the results of two methods become equal. Additionally,
Figure 29 shows the spatial intensity distributions that
cannot be represented in classical SEA. As expected, the
hybrid PFFEM for built-up structures is applied
successively.

4. CONCLUSION

In this work, the hybrid power flow method using SEA
concepts was developed to predict the vibrational and
acoustic responses in the medium-to-high frequency
ranges for reverberant systems. To develop the general
hybrid method which uses SEA parameters in power
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(a)

(b)

Figure 26. Energy density levels (dB) of an automobile-
shaped structure by hybrid PFFEM when 500 Hz and 7=
0.01: (a) flexural energy density; (b) in-plane energy
density.

flow analysis, the general hybrid boundary conditions
including all degree-of-freedoms in one-, two-, and three-
dimensional cases were derived, and the numerical
analyses for the validation of these methods were
performed. As a result, the hybrid power flow method
was proven to be effective in obtaining power flow
solution in the reverberant system. Finally, for the
application of the hybrid power flow method to real built-
up structures, the new joint element matrix for hybrid
PFFEM was derived and was validated by the several
successive numerical applications. In the medium-to-
high frequency ranges, the developed hybrid power flow
method can be an effective tool for the prediction of
vibrational and acoustic responses in built-up vehicle
structures, such as an automobile, ship and aircraft,
especially when it uses experimental data for the
reverberant system.
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(b)

Figure 27. Energy density levels (dB) of an automobile-
shaped structure by classical PFFEM when 500 Hz and 77
=0.01: (a) flexural energy density; (b) in-plane energy
density. -
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Figure 28. Relative difference (|E.-E.|/|E]) between
flexural energy densities in the measuring point, using
classical and hybrid PFFEM as the reverberance factor
variation of the measuring subsystem.
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Flexural intensity distribution (dB)

(®)

Figure 29. Intensity level distributions (dB) of an auto-
mobile-shaped structure by hybrid PFFEM when 500 Hz
and 7=0.01: (a) flexural intensity; (b) in-plane intensity.
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APPENDIX

1. Numerical Analysis for One-dimensional Case

The equation and exact solution of flexural motion in
beam i using equation (1) can be represented as,
respectively,

'w; 'w,
Ec iIi . i -
" oxd or

ik ik kpx; kex. s
wilx, t)=(Aie "+ Be "+ Ce "+ De” ), (A2)

+p:S = F;8(x, — x,)¢ and (A1)

where w, is the transverse displacement of beam i and
kf,:(a)zpl-S,-/ E. ,rI,~)1/4 is the flexural wavenumber of
beam i. The equation and exact solution of longitudinal
motion in beam i can be expressed as, respectively,

azu,- 821/{1' it

Ec,iSi'——z" + 0 i~ = Fi5(x1 —xO)e] and (A3)
ox; ot

(e, =M™ + Ni& e, (A4)
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where u, is the longitudinal displacement of beam i and is
the longitudinal wavenumber of beam i. Because there
are a total of 22 unknowns, the boundary conditions of
the same number must be enforced to solve the problem.
The energy governing equations and energy densities of

m”-type energy in beam p using equations (5) and (6)
can be represented as, respectively,

~ wd—éeL“ Ny @{€)y, = I, ,,, and
mp

(€p = Py ™ + Qppe™,
where (€)n,, c,m, and 17,, is the energy density, group
velocity, and damping loss factor of “m”-type in beam p,

respectively, and @,,, = 1, @/ ¢, . In case of the power
flow solution, a total of sixteen unknowns exist.

(A5)

(A.6)

2. Numerical Analysis for Two-dimensional Case
The energy governing equations for two-dimensional thin
plate given in equation (13) can be expressed as

Com(d &
- nmjmw(d_z * 52) ()i + My @€y = Wipnjy  (AT)

where (€}, ¢, .;, and 17,; are the energy density, group
velocity and structural damping loss factor of “m”-type in
plate j, respectively. If all y-directional boundaties are
simply-supported like the model in Figure 12, the
analytic solution of equation (A.7) can be obtained as a

single series solution,

(5 ¥)=2 E,; .cosk,y

n=0

= D (ALe ™ 4 Agy e ™ )cosk,y, (A8)
n=0

where E,,, is the n’th component of the series solution, equa—
tion (A.8), k,=(nn/L,) and A, ,=(k; + (7.,0/c, ,,,,) ).

The intensity of “m”-type wave component in the j’th
plate can be obtained by the energy transfer relation,

equation (14),

<qx>mj(xj’ }’) = Z me,;,,COSk,,y

n=0

Z {(—&—Lkm, ,,) (A e ¢ "—Amj,nel'”j'")cosk,,y} and

T @
(A.9)
(@Ymi(, y)= Z Oy nSi0K, Y
= z {(E&—Lk ) (An; e iy A,,,j,,,eh'""’”)sink,ly},
i ® (A.10)

where (q.).; and (gq,),; are the x-and y-components of

intensity, {(g)n; -
In addition, the input power can be approximated as,

I, 8(x - %) 8y —yo) = 2 I, .(x)cosk,y, (A.11)
n=20

where T1, is the input power of “m”-type component.
Here, I1,, ., the n’th component of IT,,, can be expressed
as

%‘é‘(x—xo) (n=0)
I, .= .7 (A.12)

Yod(x—x,) (n#0)

The six unknowns in each plate’s domain exist, and a
total of twenty four boundary conditions must be
enforced. The intensity of each wave component is zero
in the simply-supported boundary and the continuity of
energy density and intensity of each wave component in
loading position must be enforced. In the line junction of
coupled plates, equation (15) is applied in the classical
power flow solutions, and equations (18-19) are applied
in the hybrid power flow solutions.

3. Numerical analysis three-dimensional case

The energy governing equation for a three-dimensional
acoustic cavity given in equation (20) can be expressed
as, in each cavity

2 2 2
77(0(88 aa 2 aa_zz) <e>a‘j + na)<e>“vf=nin,j(x’ Y, Z),
(A.13)

where (e),; is the acoustic energy density in cavity j.

If power transferred in all the y-and z-directional area
boundaries of cavities is zero in the model shown in
Figure 17, the power flow solution of equation (A.13) can
be obtained as, double series solution,

3:2) = 33 By (x)cos(kyy)cos(k,z)

m=0n=0

<e>a,j(x1

Z Z mne Ty A;m,,exj"”")cos(k,,,y)cos(knz),
T (A.14)

where  k,=mn/L,, k,=mz/L,, and A .=k, +k,
+ (mw/c,;)’. The intensity in the j’th acoustic cavity
can be obtained by the energy transfer relation, equation
(22),

(a.), (x,.2) =
Zz{[ 8.7 A, ]( € w..Ajmnef'”‘”)coskmycosan} ;

m=0 n=0
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(0, (535)-
© w 2
zz{(f& m]( A7, e g A el )sin k,ycosk, z}

S CZ X

Z{[_g_/_ nJ(A;mn & 4, o )cos k,ysin an} ,
m=0 n=0 ’Z/a)
(A.15-17)

where (g, (g,); and (g,); is the x-, y- and z-
components of intensity, (g);.

Like the two-dimensional case, the acoustic input
power can be approximated as,

IT&(x — x0) 8y — yo) Kz - 20)
= i i IT...(x)cosk,ycosk,z,

m=0n=0

(A.18)

where IT is the acoustic input power. I1,,,, the m’th and

n’th components of IT can be expressed as

I1
Z:L—z5<y~yo>5<z—zo) (m=0,n=0)

212 cosk,z,6(y-y,) (m=0,n%0)

n,, = ’H . (A.19)
cosk,y,8(z—z,) (m#0,n=0)

y*™z

cosk,y,cosk,z, (m#0,n#0)

'y 'z

Two unknowns in each acoustic cavity’s domain exist,
and a total of eight boundary conditions must be
enforced. The intensities of acoustic wave components
are zero in the zero-power boundary, and the continuity
of the energy density and intensity of each wave
component in the source position must be enforced. In
the area junction of coupled acoustic cavities, equation
(24) is applied in the classical power flow solutions and
equation (27) is applied in the hybrid power flow
solutions.



