Recent Advances in DNA Sequencing by End-labeled Free-Solution Electrophoresis (ELFSE)

  • Won, Jong-In (Department of Chemical Engineering, Hongik University)
  • Published : 2006.06.30

Abstract

End-Labeled Free-Solution Electrophoresis (ELFSE) is a new technique that is a promising bioconjugate method for DNA sequencing (or separation) and genotyping by both capillary and microfluidic device electrophoresis. Because ELFSE enables high-resolution electrophoretic separation in aqueous buffer alone (i.e., without a polymer matrix), it eliminates the need to load viscous polymer networks into electrophoresis microchannels. To achieve microchannel DNA separations with high performance, ELFSE requires monodisperse perturbing entities (i.e., drag-tags), which create a large amount of frictional drag when pulled behind DNA during free-solution electrophoresis, and which have other properties suitable for microchannel electrophoresis. In this article, the theoretical concepts of ELFSE and the required characteristics of the drag-tag molecules for the ultimate performance of ELFSE are reviewed. Additionally, the merits and limitations of current drag-tags are also discussed in the context of recent experimental data of ELFSE separation (or sequencing).

Keywords

References

  1. Lander, E. S., L. M. Linton, B. Birren, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860-921 https://doi.org/10.1038/35057062
  2. Venter, J. C., M. D. Adams, E. W. Myers, et al. (2001) The sequence of the human genome. Science 291: 1304-1351 https://doi.org/10.1126/science.1058040
  3. Collins, F. S., E. D. Green, A. E. Guttmacher, and M. S. Guyer (2003) A vision for the future of genomics research. Nature 422: 835-847 https://doi.org/10.1038/nature01626
  4. Liu, S. R., H. J. Ren, Q. F. Gao, D. J. Roach, R. T. Loder, Jr., T. M. Armstrong, Q. Mao, I. Blaga, D. L. Barker, and S. B. Jovanovich (2000) Automated parallel DNA sequencing on multiple channel microchips. PNAS 97: 5369-5374
  5. Mitnik, L., M. Novotny, C. Felten, S. Buonocore, L. Koutny, and D. Schmalzing (2001) Recent advances in DNA sequencing by capillary and microdevice electrophoresis. Electrophoresis 22: 4104-4117 https://doi.org/10.1002/1522-2683(200111)22:19<4104::AID-ELPS4104>3.0.CO;2-F
  6. Carrilho, E. (2000) DNA sequencing by capillary electrophoresis and microfabricated array systems. Electrophoresis 21: 55-65 https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<55::AID-ELPS55>3.0.CO;2-I
  7. McCormick, R. M., R. J. Nelson, M. G. Alonso-Amigo, D. J. Benvegnu, and H. H. Hooper (1997) Microchannel electrophoretic separations of DNA in injection-molded plastic substrates. Anal. Chem. 69: 2626-2630 https://doi.org/10.1021/ac9701997
  8. Jacobson, S. C., R. Hergenroder, L. B. Koutny, and J. M. Ramsey (1994) High-speed separations on a microchip. Anal. Chem. 66: 1114-1118 https://doi.org/10.1021/ac00079a029
  9. Woolley, A. T. and R. A. Mathies (1994) Ultra-high speed DNA fragment separations using microfabricated capillary array electrophoresis chips. PNAS 91: 11348-11352
  10. Bruin, G. J. M., T. Wang, X. Xu, J. C. Kraak, and H. Poppe (1992) Preparation of polyacrylamide gel-filled capillaries by photopolymerization for capillary electrophoresis. J. Microcol. Sep. 4: 439-448 https://doi.org/10.1002/mcs.1220040512
  11. Viovy, J. L. (2000) Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms. Rev. Modern Phys. 72: 813-872 https://doi.org/10.1103/RevModPhys.72.813
  12. Zhou, H., A. W. Miller, Z. Sosic, B. Buchholz, A. E. Barron, L. Kotler, and B. L. Karger (2000) DNA sequencing up to 1300 bases in two hours by capillary electrophoresis with mixed replaceable linear polyacrylamide solutions. Anal.Chem. 72: 1045-1052 https://doi.org/10.1021/ac991117c
  13. Denn, M. M. (1980) Process Fluid Mechanics. Prentice- Hall, Englewood Cliffs, NJ, USA
  14. Slater, G. W. and G. Drouin (1992) Why can we not sequence thousands of DNA bases on a polyacrylamide gel? Electrophoresis 13: 574-582 https://doi.org/10.1002/elps.11501301116
  15. Slater, G. W., T. B. L. Kist, H. Ren, and G. Drouin (1998) Recent developments in DNA electrophoretic separations. Electrophoresis 19: 1525-1541 https://doi.org/10.1002/elps.1150191003
  16. Noolandi, J. (1992) A new concept for sequencing DNA by capillary electrophoresis. Electrophoresis 13: 394-395 https://doi.org/10.1002/elps.1150130180
  17. Mayer, P., G. W. Slater, and G. Drouin (1994) Theory of DNA sequencing using free-solution electrophoresis of protein-DNA complexes. Anal. Chem. 66: 1777-1780 https://doi.org/10.1021/ac00082a029
  18. Noolandi, J. (1993) A new concept for separating nucleic acids by electrophoresis in solution using hybrid synthetic end labeled-nucleic acid molecules. Electrophoresis 14: 680-681 https://doi.org/10.1002/elps.11501401108
  19. Sanger, F., S. Nicklen, and A. R. Coulson (1977) DNA sequencing with chain-termination inhibitors. PNAS 74: 5463-5467
  20. Cohen, A. S., S. Terabe, J. A. Smith, and B. L. Karger (1987) High-performance capillary electrophoretic separation of bases, nucleosides, and oligonucleotides: Retention manipulation via micellar solutions and metal additives. Anal. Chem. 59: 1021-1027 https://doi.org/10.1021/ac00134a020
  21. Lerman, L. S. and H. L. Frisch (1982) Why does the electrophoretic mobility of DNA in gels vary with the length of the molecule? Biopolymers 21: 995-997 https://doi.org/10.1002/bip.360210511
  22. Olivera, B. M., P. Baine, and N. Davidson (1964) Electrophoresis of the nucleic acids. Biopolymers 2: 245-257 https://doi.org/10.1002/bip.1964.360020306
  23. Long, D. and A. Ajdari (1996) Electrophoretic mobility of composite objects in free solution: Application to DNA separation. Electrophoresis 17: 1161-1166 https://doi.org/10.1002/elps.1150170628
  24. Ren, H., A. E. Karger, F. Oaks, S. Menchen, G. W. Slater, and G. Drouin (1999) Separation DNA sequencing fragments without a sieving matrix. Electrophoresis 20: 2501- 2509 https://doi.org/10.1002/(SICI)1522-2683(19990801)20:12<2501::AID-ELPS2501>3.0.CO;2-H
  25. Vreeland, W. N. and A. E. Barron (2000) Free-solution capillary electrophoresis of polypeptoid-oligonucleotide conjugates. Abstr. Pap. Am. Chem. Soc. 219: 555-556
  26. Won, J.-I., R. J. Meagher, and A. E. Barron (2005) Protein polymer drag-tags for DNA separations by endlabeled free-solution electrophoresis. Electrophoresis 26: 2138-2148 https://doi.org/10.1002/elps.200410042
  27. Volkel, A. R. and J. Noolandi (1995) Mobilities of labeled and unlabeled single-stranded DNA in free solution electrophoresis. Macromolecules 28: 8182-8189 https://doi.org/10.1021/ma00128a031
  28. Sudor, J. and M. V. Novotny (1995) End-label, freesolution capillary electrophoresis of highly charged oligosaccharides. Anal. Chem. 67: 4205-4209 https://doi.org/10.1021/ac00118a026
  29. Sudor, J. and M. V. Novotny (1997) End-label freesolution electrophoresis of the low molecular weight heparins. Anal. Chem. 69: 3199-3204 https://doi.org/10.1021/ac961297f
  30. Heller, C., G. W. Slater, P. Mayer, N. Dovichi, D. Pinto, J-L. Viovy, and D. Guy (1998) Free-solution electrophoresis of DNA. J. Chromatogr. A 806: 113-121 https://doi.org/10.1016/S0021-9673(97)00656-0
  31. Lehninger, A. L., D. L. Nelson, and M. M. Cox (1993) Principles of Biochemistry. 2nd ed., Worth Publishers, New York, NY, USA
  32. Simon, R. J., R. S. Kania, R. N. Zuckermann, et al. (1992) Peptoids: A modular approach to drug discovery. PNAS 89: 9367-9371
  33. Zuckermann, R. N., J. M. Kerr, S. B. H. Kent, and W. H. Moos (1992) Efficient methods for the preparation of peptoids [oligo(N-substituted glycines)] by submonomer solid-phase synthesis. J. Am. Chem. Soc. 114: 10646- 10647 https://doi.org/10.1021/ja00052a076
  34. Haynes, R. D., R. J. Meagher, J.-I. Won, F. M. Bogdan, and A. E. Barron (2005) Comblike, monodisperse polypeptoid drag-tags for DNA separations by end-labeled free-solution electrophoresis (ELFSE). Bioconjug. Chem. 16: 929-938 https://doi.org/10.1021/bc0496915
  35. Vreeland, W. N., C. Desruisseaux, A. E. Karger, G. Drouin, G. W. Slater, and A. E. Barron (2001) Molar mass profiling of synthetic polymers by free-solution capillary electrophoresis of DNA-polymer conjugates. Anal. Chem. 73: 1795-1803 https://doi.org/10.1021/ac001380+
  36. Meagher, J. R., J.-I. Won, L. C. McCormick, S. Nedelcu, M. M. Bertrand, J. L. Bertram, G. Drouin, A. E. Barron, and G. W. Slater (2005) End-labeled free-solution electrophoresis of DNA. Electrophoresis 26: 331-350 https://doi.org/10.1002/elps.200410219
  37. Haider, M., Z. Megeed, and H. Ghandehari (2004) Genetically engineered polymers: status and prospects for controlled release. J. of Control. Release 95: 1-26 https://doi.org/10.1016/j.jconrel.2003.11.011
  38. Meyer, D. E. and A. Chilkoti (2002) Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: Examples for the elastin-like polypeptide system. Biomacromolecules 3: 357-367 https://doi.org/10.1021/bm015630n
  39. Won, J.-I. and A. E. Barron (2002) A new cloning method for the preparation of long repetitive polypeptides without a sequence requirement. Macromolecules 35: 8281-8287 https://doi.org/10.1021/ma020892i