Paradoxical Herniation after Decompressive Craniectomy for Acute Subdural Hematoma

Hyun Cho, M.D., Choong Hyun Kim, M.D., Jae Hoon Kim, M.D., Jae Min Kim, M.D.
Department of Neurosurgery, School of Medicine, Hanyang University, Guri Hospital, Guri, Korea

Decompressive craniectomy is usually performed to relieve increased intracranial pressure (ICP) caused by various intracranial lesions. A 67-year-old man presented with acute subdural hematoma and traumatic intracerebral hematoma. The patient underwent a decompressive craniectomy. Four weeks later, the patient presented with acute neurological deterioration. Brain computed tomographic (CT) scans revealed the marked concavity of the brain at the site of the craniectomy and associated with midline shift which was reversed by cranioplasty. We report an unusual case of cerebral herniation from intracranial hypotension after decompressive craniectomy for a traumatic subdural hematoma. The cranioplasty may be helpful to prevent paradoxical cerebral herniation.

KEY WORDS: Cerebral herniation - Cranioplasty - Decompressive craniectomy - Subdural hematoma.

Introduction

Decompressive craniectomy is often performed to relieve increased intracranial pressure (ICP) in patients suffering from head injury, stroke, or postoperative complications.

The syndrome of the sinking skin flap, suggested by Yamamura in 1977, could explain the neurologic deterioration following decompressive craniectomy. Also the term paradoxical herniation has been suggested to describe this phenomenon. In this situation, the skull defect created a siphon effect to the cerebrospinal fluid (CSF) dynamics and the atmospheric pressure was directly transmitted to the intracerebral cavity, causing neurological deficits. After craniectomy, transtentorial herniation is possible even in the absence of increased ICP. It is related to the negative gradient between atmospheric and intracranial pressures, which is enhanced by changes in the CSF compartment following upright position, CSF leakage or dehydration. However, the neurological deterioration by the cerebral herniation following decompressive craniectomy has been less well known in literatures with regard to the neurological improvement following cranioplasty.

The authors report an unusual case of spontaneous transtentorial herniation after decompressive craniectomy and discuss possible mechanisms with review of the literatures.

Case Report

A 67-year-old man presented with mental deterioration following head injury. On admission, he was stuporous with motor weakness on the left side. Brain computed tomographic (CT) scans revealed a large amount of subdural hematoma on the right frontotemporoparietal region and traumatic intracerebral hematoma in the left frontal region (Fig. 1). The

Fig. 1. Preoperative axial computed tomographic (CT) scan showing the acute subdural hematoma on the right frontotemporoparietal region and intraparenchymal hemorrhage in the left frontal lobe with brain shift to the left.
brain CT scan after cranioplasty showed the restoration of the shifted midline (Fig. 4).

Discussion

In patients with craniectomy, the cranium do not maintain a rigid structure. Therefore, the Monto-Kellie doctrine that the sum of volumes of brain, CSF, and intracranial blood is constant, can not be applied as it is stands. Another factor, atmospheric pressure, can influence this equilibrium. Increased transmission of atmospheric pressure will decrease volume of brain or CSF in patients with craniectomy. This phenomenon will be exacerbated by upright position, CSF leakage or dehydration, causing shift of brain from supratentorial compartment to infratentorial one.

The first pathophysiologic explanation for this phenomenon was suggested by Gardner et al. in 1945, who claimed that, unlike the brain in the closed calvaria, the brain pulsed with every alteration of arterial or venous pressure in a trephined skull. In 1968, Langfitt suggested that the atmospheric pressure was transmitted to the intracranial cavity, causing inward rotation of the scalp over the cranial defects. This pressure acting over the cerebral cortex may cause neurological deficits. Some authors claimed that the skull defect creates a siphon effect on the CSF dynamics related to the distortion of the dura, underlying cortex, and venous return by scarring and direct pressure.

There have been a few studies about the neurological improvement after cranioplasty in patients with craniectomy. Richaud et al. reported that in their all cases, there was a 15 to 30% increase in cerebral blood flow in the area of cortex adjacent to the cranioplasty. They proposed restoration of normal cerebral hemodynamics as a mechanism for neurological recovery after cranioplasty. In 1985, Stula suggested that the atmospheric pressure acting on the unprotected brain, produced brain compression and cranioplasty normalized this situation. Segal et al. reported a case that the patient improved significantly in motor function after cranioplasty, emphasizing on the restoration of local hemodynamics under the altered pressure and removal of scarring.

Since Yamamura et al. named the phenomenon "the syndrome of the sinking skin flap", there were many reports about treatment of patients with neurological deterioration following craniectomy or craniotomy. Tabaddor et al. reported a case with severe sinking at the skull defect and contralateral hemiparesis after craniectomy, and the patient was recovered after cranioplasty. They believed that neurological improvement following cranioplasty was due to the relief of the pressure gradient between the atmosphere and the intracranial space. In 1997, Schiffer et al. reported five cases of this syndrome
that were improved by cranioplasty and recommended early prophylactic cranioplasty in cases with large, concave, or fluctuating skull defects, especially if any neurological deterioration occurs without an apparent cause. Some authors\(^{5,7,8}\) claimed that lumbar puncture should be avoided in patients with craniectomy or craniotomy, because a position-dependent transtentorial herniation of the brain might occur. The maneuver of placing a patient in the Trendelenburg position or intrathecal saline infusion with aggressive intravenous fluid resuscitation could be potentially life saving in this situation. In our case, we postulated that aggressive exercises consisting of mobilization and upright positioning may have adversely affected the underlying process, and the negative pressure gradient between atmospheric and intracranial pressure might cause cerebral herniation. After we performed cranioplasty and adequate hydration, the good outcome was achieved in a patient who was deteriorated neurologically.

Conclusion

We report a rare case of paradoxical cerebral herniation after decompressive craniectomy. It should be kept in mind that this herniation may cause neurological deterioration after craniectomy, and early cranioplasty with adequate hydration warrants good outcome.

References

