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A New Approach to Solve the Rate Control Problem
in Wired-cum-Wireless Networks

Le Cong Loi*, Won-Joo Hwangﬁ

ABSTRACT

In this paper, we propose a new optimization approach to the rate control problem in a wired-cum-wire—
less network. A primal-dual interior-point (PDIP) algorithm is used to find the solution of the rate opti—
mization problem. We show a comparison betweéen the dual-based (DB) algorithm and PDIP algorithm
for solving the rate control problem in the wired-cum-wireless network. The PDIP algorithm performs
much better than the DB algorithm. The PDIP can be considered as an attractive method to solve the
rate control problem in network. We also present a numerical example and simulation to illustrate our

conclusions.
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1. INTRODUCTION

In recent years, a rate control problem in wired
networks has been extensively studied{1-4]. It has
been proved that, since the feasible rate region can
be represented by a set of simple, separable, con—
vex constraints in the wired networks, the globally
fair rate is attainable via distributed approaches
based on convex programming. Besides, the rate
optimization for single-hop flows in wireless net—
works has also been widely considered. In[5],
Tassiulas and Sarkar have proposed a centralized
algorithm to attain max-min fair rate in certain ad
hoc networks. On the other hand, Nadagopal et al.
{6] and Ozugur et al.[7] have presented decentral-
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ized algorithms that try to achieve some fair rate
allocations. Recently, Wang, Kar and Low[8] have
considered the rate control problem in a so-called
wired-cum-wireless network where a session may
run across both wired and wireless links. In a typi-
cal wired-cum-wireless network, mobile hosts
(MHs), such as laptop computers, peripherals and
storage devices can roam in the wireless network,
called basic service sets (BSSs), which are at—
tached at the periphery of a wired backbone
(infrastructure). The wired infrastructure can be
an IEEE 802 style Ethernet LAN or some other IP
based networks. An example of a typical
wired-cum-wireless network is shown in Fig. 1.
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Fig. 1. A wired-cum-wireless network.
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The wired and wireless networks are inter-con-
nected via access points (APs), which are actually
fixed based stations that provide interfaces be-
tween the wired and wireless parts of the network,
and control each BSS. The MHs can roam from
one BSS to another. A MH within a BSS can only
access the infrastructure through its AP, and it is
assumed that in each BSS all the MHs are within
the broadcast region of that particular AP.

In[8], the rate

wired-cum-wireless network has been introduced.

control problem in the
It is different to the rate optimization in the wired
networks which is a convex programming problem
[2,3], that is, the former is not a convex program-—
ming problem. This makes the rate control problem
in the wired-cum-wireless network even more
difficult to solve. To overcome this difficulty, au-
thors of[8] have proposed a DB distributed algo-
rithm to iteratively solve the problem of rate opti-
mization in the wired-cum-wireless network. Note
that, in this network model, one could find not only
the best rate for each session but also the trans-
mission rates on the wireless links that support the
session rates. In fact, the DB algorithm solves iter-
atively the rate control problem in the
wired-cum-wireless network by outer iterations
and inner iterations. The inner iterations work at
the transport layer to solve the rate control problem
when the wireless links therein have fixed capaci-
ties and the link transmission rates are given by
the gradient projection method. The problem is es—
sentially the same as the end-to—end proportional
fair rate control problem in the wired network[2].
After carrying out the inner iterations, the DB al-
gorithm will work at the link layer to update the
transmission rate of the wireless links using also
the gradient projection algorithm for solving an-
other optimization problem. Noting that, the con-
vergence rate of the gradient projection algorithm
is only linear.

The PDIP method is known to be an omnipre-

sent, conspicuous feature of the constrained opti-

mization landscape today(9]. Moreover, under the
suitable assumption, the PDIP method converges
at a quadratic rate[10]. Boyd and Vandenberghe
[11] have applied a barrier method to solve the rate
control problem in the wired network. On the other
hand, the PDIP method is often more efficient than
the barrier method, especially when high accuracy
is required, since they can exhibit better than linear
convergence.

Motivated by an impressive computational per—
formance of the PDIP algorithm, we solve the rate
control problem in the wired-cum-wireless net—
work using the PDIP algorithm. Although we can
solve a non-convex problem using the PDIP meth-
od, in this paper, we first transform the rate control
problem of the wired—cum-wireless network which
is a non-convex problem into an equivalent prob-
lem that is a convex programming problem, and
then, we describe the implementation of the PDIP
algorithm to solve the equivalent problem. An in-
teresting feature of Wang, Kar and Low’s ap-
proach is that its computation is simple, whereas
in our approach the computational time is low. See
a more detailed comparison in the end of Section
4,

The present paper is structured as follows. In
Section 2, we review the rate optimization problem
in the wired—cum-wireless network and propose
an equivalent convex problem. The description of
the DB distributed algorithm is discussed in
Section 3. In Section 4, the PDIP algorithm is de~
scribed in detail, and in Section 5, the simulation
results show that the PDIP converges significantly
faster than the DB algorithm of[8]. Section 6 con—
cludes the paper with remarks on future research

topics of interest.

2. OPTIMIZATION PROBLEM

We consider a general wired-cum-wireless net—
work that consists of a set M of all MHs, a set
W of CSMA/CA based BSSs, a set N of fixed
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nodes in the wired backbone and a set L of unidir-
ectional links which connect the fixed nodes in the
wired backbone. Similarly in[8], we assume that
each MH belongs to one and only one BSS, and
each BSS has one and only one AP. Each node has
a single transceiver and a node can not transmit
and receive simultaneously, and can not receive

more than one frame at a time.

For each BSSw,weW  we let M« be the set of
nodes in that particular BSSw. Noting that BSS

w has only one AP, hence we denote 4(S) as the

AP associated with MHs, ie, A =4,ifseN,

where 4+ is an AP of the BSSW. In BSSW, a link

exists between two nodes if and only if they can

receive each other’s signals. A directed edge(s?)

represents an active communication pair for
s;te N, and Euis the set of directed edges in BSS
w . For any nodeser, let Di={t:(s.00€E} and

J,={t:(t,;5)€ E,}be the set of neighbors to which
sis sending traffic and the set of neighbors from
which §is receiving traffic, respectively. We further
assume that the scheduling point process for each

used link (S0 € £, is Poisson and is independent
with other processes in the network. In addition,
the frame lengths are assumed to be exponentially
distributed. The transmission rate for a wireless

link (8:9) is denoted as Ps:; which is the average
Poisson transmission attempts made during an
average frame transmission time. On the other
hand, the propagation delay is assumed to be zero
in the network model. The lengths of Request to
Send (RTS) and Clear to Send (CTS) are also as-
sumed to be very small, their transmission time
can be ignored, and acknowledgments are obtained
instantaneously. ]

By end-to-end sessions within a BSS are not
allowed according to the assumption, an immediate
result is that all links in the BSS are between its
MHs and the AP, and therefore no two links in a

BSS can be scheduled at the same time. Let
P=(ps, (s.0eE, weW)e R 1o the vector of trans-
mission rates for all wireless links in the

wired-cum-wireless network, where | M | denotes

its cardinality. It has recently been shown[12] that
the attainable throughput on link (5,1 in BSSw,

in which either $ or ¢/ must be the AP Aw, can be

expressed as

Ps.s
e, (p)= = As,0)€E,.
1+ Z Pkt zpk..L
keD,, kel 1)
) ZP&_A
Here, noting that the terms #eD,, and
ZPA-.A,. L
ke, are the sums of transmission rates on all

downlinks and uplinks respectively in BSS w.
The wired backbone of the network connects the

set of APs using the set L of unidirectional wired

links whose capacity is denoted by € (/€ L), here

is fixed for all /eL. AP 4 connects AP 4
through a pathL(AwAv), where the path L(4.>4)is

the set of links that are used for the communication
from AP 4 to AP 4. For each link/€L, let
SU={(A4,,4) Wy €W apql € L(4,,4,))

be the set of communication pairs consisting of
APs that use link/. The wired-cum-wireless net-
work is shared by the set § of end-to-end
sessions. A session # €3S can be usually expressed
as(>/) | meaning that the origin of the session (/)
is MH 7 in BSS w and the sink is MH J in BSSv,
where"-V€W Let Yi be the session rate for the
session{. ) €S . As mentioned before, for sim-
plicity of exposition, we assume that BSS ¥ and
BSS v denote different BSSs. However, those re—
sults can be easily extended to the scenarios where

end-to-end sessions within a BSS are allowed. It

is worth noting that each session in this network
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model runs across both wired links which have
fixed link capacities and wireless links whose ca-
pacities depend on the transmission rates of MHs
in that particular BSS (see Eq. (1)). Also, note that
APs generate no traffic. They only forward the
traffic between the wireless and the wired parts
of the network.

We have now specified the following rate control

problem in wired-cum-wireless network[8]:

. ZIOg(J’U‘)
maximize .jes

subject to Vi <Can(P)  V(L))ES,

Yy SCAU)J(,O)’ v(lyj)es’
ny' <¢,
mu),Am)ss{U) viel,

»p >0, (2)

where the optimization variables are both session
iy (i isi o

rates ¥ =y (1) €S € R34 transmission rates

p=(p (s, Epwe) e R Note that link capaci-

ties ¢»/€L are assumed to be fixed parameters.

Since the sessions originate from one wireless
network and end at another, they will travel two
and only two wireless links, one is from the origin
to the access point, and the other is from the access
point in the destined wireless network to the sink.
The first and the second sets of constraints say
that the rate of the end-to-end sessions do not ex-
ceed the capacities of the two wireless links that

are traveled, while .;(?) is given in Eq. (1). Next,
the sessions will across through a set of links in
the wired backbone, hence the third sets of con-
straints states that, the aggregate session rates at
any wired link / can not exceed the capacity of that
link.

In contrast to the wired backbone which has
fixed capacities for each link, the attainable
throughput on a link of a CSMA/CA based BSS
has changeable value. Note that, under certain re—

source allocation scheme, the wireless link rates
are computed and the session rates are adjusted
so that the aggregate utility Is maximized.
However, since the wireless link capacities are not
fixed, it is possible that, through resource realloca-
tion, capacities of those bottleneck links in the
wireless network can be increased and the ag-
gregate utility can be further increased. Thus, the
problem (2) involves not only the rate control for
each end-to-end session, but also the best resource

allocation schemes to support the session rates.

Note that the functions (P are not convex
or concave functions of the transmission rates?,
and hence the problem (2) is not a convex
programming. Now we will propose another opti-
mization problem which is equivalent to the prob-
lem (2) and is a convex programming problem. In
fact, this problem has been introduced in[8].
However, authors off8] did not solve the equivalent
convex programming problem. They only used it
to prove the convergence of the DB algorithm. In
our approach, we will solve the equivalent convex

programming problem by the PDIP algorithm. Let
Zp> T and % be the logarithmic values of the ses-
sion rate Yy, transmission rate Psr, and wired link

capacity €, respectively, ie., % =10g(y,j)’

. =108(P0) | and @ =108(¢) | Since both sides of
the first three constraints in the problem (2) are
positive, and since the logarithmic function is
strictly increasing, taking logarithmic values on
both sides of the first three constraints, the
end-to-end proportionally fair rate control problem
in the wired-cum-wireless network, as given (2),
can be rewritten as

c T ZZ'J'
mimmize @i./)es

subject to

z, +log(1+ Ze”‘"” + Ze’“‘"’ )=y S0,

keD gy ked 1



1640 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 12, DECEMBER 2006

z,+log(l+ Y+ Ny oy, <0,

keDy,, ked 40
V(i j)es,
log( Y.e”)-d <0Vviel,
(A AGNeSH) (3)

where z= (ZU (l,_]) € S) € R and r=( Yoz l (S9t ) €
E, w eW) ew™ are optimization variables.

According to Chiang[13], for a€® andX%€R,

log(a + Ze")
i=1

i=1....7 the function is a convex

function for (%i--%:). It implies that the con-
straints in the problem (3) constitute to convex set.
Thus, we obtain that the equivalent problem (3)
is a convex programming problem. In Section 4,
instead of solving the non-convex problem (2), we
will solve the equivalent convex problem (3) by
applying the PDIP algorithm.

3. THE DUAL-BASED DISTRIBUTED
ALGORITHM

We now review the DB algorithm(8] to solve the
problem (2) iteratively. The non-convex program-
ming problem (2) may be solved through approach
as follows. Instead of solving (2) directly, Wang,
Kar, and Lowl[8] have considered the para-
meterized version of an end-to-end proportionally
fair rate optimization problem when the attainable

throughputs on wireless link ¢.(P) are para-

meterized as *s: for any (D€ E, andweW

- > log(y,)
maximize ¢jes
subject to Y5 SFaw, V(E)ES,
YySXagpy,  VYE)ES,
(Aux%){gm = CI, viel,
y20. (4)

Clearly, the key difference between the problem

(2) and the problem (4) is that, the wireless link
capacities in (2), whose values are not fixed and
depend on the transmission rates of wireless links,
are parameterized in (4). Thus, the optimum value
in (4) is a function on *, where X is the vector
of capacities of all wireless links which the ses—

sions travel through, that means ¥ =(%it Xa,:

(i,)es) G‘Rilsl, and we denote Ulx) as the opti-
mum value in (4) when X is parameterized, i.e.,

. log(y, )] ¥y < %, 45
Ulx)= max {(,Jz);s v e

¥, <x Zyy.sc,,yzo}.
§ 7 AW (4. AGNeST)

From the vector of capacities of the wireless
links in (2) in turn is a function on the link trans-
mission rates, we can define function T(#)= K¢
(P)), where

c(p)= (ci_A(i)(p)ac_q(j),j(p) (G, NeSe milsl .
Hence, problem (2) can be rewritten as follows

maximize [(P)

subject to P20 V(s.)eE, ,weW. )]

Now, we will present the DB distributed algo-
rithm{8]. Firstly, when the vector of transmission

rates P is given, the convex programming prob-
lem (4) will be solved using a synchronous gra—
dient projection algorithm in[2]. The session rates
and the Lagrange multipliers of the dual problem

of (4) when *=¢(P™) are computed by the follow-

ing formulae

1
()
Yy = ’
! Tk + s+ 2 v(i,/)eS,  (6)

JeL(AG).A)

(n.k) ()
1.A() p.am T ﬂ()’q - ci.A(t)(P ))]:

l(]wl) — ;[fk)
v(i,j)eSs, (7
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) _ [0 (n.k) ( (n)))]’
L = Pains + PO a0 ,\0 ’

V(i j)es, 8)

H el ©

where £>0 is a step size, [Zr =max{z,0}.

After using the synchronous gradient projection

n= {W’w[ 2=

(A, A nesS

algorithm for solving the problem (4) and its dual
problem, we apply a gradient projection algo-
rithm(14] to solve iteratively the problem (5) as
follows:

(10)

Vel (k,meE, op,,

P =] p 4 52 j?(") 0 (p(m):l

whered >0 is a step size, for any(SO€E, w eW
6ck4m
, VEW then 0p,,

()

(k,m)eE,

and is computed

with the following formula

()

Qck_m( (n)): Pr.m

ap,, ’
[l+ zp(")u+ zp(n) ]

ueDy ued,,

if v= Wand(k,m) * (S,t),

I+ 3 a0+ 20, = ALY
k,m (n) ueD, ued ,,
6p5,(p )- ’
e T ot Tt

ueDy, ued

if (km)=s,0),

ic_m(pw):

op;, , otherwise,

*n) | . .
and A is the optimum solution of the dual prob-

lem of (4) when * =C(P(")) which are obtained for
solving the problem (4) and its dual problem iter-
atively using the formulae Eq. (6)-Eq. (9). We

summarize,

ALGORITHM 1. DUAL-BASEDI[8]
Choose vectors

@ (ps(o,)>0:(s,l)e Ew,weW)e KW

A0 —(/1‘0’ >0,4% >0:(,j)e S) RIS,

1.4(0) AUY-J

y@ = (},(0) >0:le L)e R,

and take €>0.

Outer loop
For n=0L... ynti] ”pwl)_p “l<¢ qo
y(n 0) _ 1
yoT 0 a0 7@
1A A

Compute o g /eL(«Z)m»
Inner loop

For #=01... m"<gd

(k+1) (k) (n.k) _ )
Aiagy = [/1““,)+ﬂ(y :A(n)(P ))T

(k+1) [ k) (),mk) (p‘"’))]‘
iy =iy, + B Caiinj ,

N

(h+1) _ | (k) (nky _

VO Zy,, I) >
(A().A(NeSW)

(nk+D) _ 1

i (k+1) {k+1)
Aiaiy ¥ Aagp.; +

Z},(k*l)

TeL{A(i).4(j)

End for.
End inner loop

(0) (k+1) (0) (k+1) 0) _ (k+l)
Set Aaw = Ao Aapy = Xagrp Vi =

Compute

Pl = P +8Y Y /12‘?;%(/7‘”))+
op,,

vel (k.m)eE,

End for.

End outer loop

Note that the authors of[8] have proved that the
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solutions, which are generated by the above algo-
rithm, converge to the globally optimum point of
the non—convex problem (2).

4. THE PRIMAL-DUAL INTERIOR-POINT
ALGORITHM

As shown in the end of Section 2, the problems
(2) and (3) are equivalent, furthermore the problem
(2) is not a convex problem but the problem (3)
1s a convex problem. Thus, in this section, instead
of solving the rate control problem (2), we will
solve the equivalent problem (3) using the PDIP
method{11].

Obviously, in the convex problem (3), the ob-
. ) m
jective function/(z:7), constraint functions&i (%7,
g, (z.r) (G, )€S), and #(2:7) (IeL) are convex
and twice continuously differentiable, where

flz,r)=- Zzu,

(i.))es

ez r) =z, +!og[l+ > e+ Zer*"”"]—;;_A(,),

keDyy kel i

) — o Fa 0k Teaon |
8y (z,r)._éij+log[l+ > et Ye ’] Fapy

keDy ked 40,y

and

h(z,r)= log[ Ze:” j—d,.

(A AGNeSU)

It leads to the necessary assumptions of the
PDIP method{11] for (3) to hold. The gradient of
f(z.r) is denoted asV/ (") and V’/(zr) denotes
the Hessian matrix of second partial derivatives of

f(zr). The gradient and Hessian of & (z:7 ),

£, ((.)€S) and Mz (IeL) are denoted

as V&'(@r) Vgl@r) ((.)eS) and VA

2

(IeL) and V'8 @r) Vg @r) ((./)eS), and

V’h(2,r) (1€ L). The (2ISI+ILDx (ISI+|M1) Jacobian

. X . o
matrix J(z7) of first derivatives of8& (%7),

gz ((,/)€S), and A=) (I€L) has rows

Vgl 2,r)" VgD @Y (G, ) € $), VA (z) (€ D)}

Finally, e denotes the vector of all ones whose
dimension is determined by the context and put

e(z,r) =(c(z,1)s s sy, (2:7))
=(gy (z.r), 80 (z.r) b (2.r):

(i.j) €Sl e L)ye R¥HH

2]+ Z|
H(z,r,A)=Vf(z,r)+ Y. AVc(z,r).

i=1
We now present the PDIP algorithm for solving

iteratively the convex problem (3).

ALGORITHM 2. PRIMAL-DUAL
INTERIOR-POINTI[11]

Choose vectors

Ae RN 2 (T 7Y e R o iop
A>0, c(x)<0.
Take £>0 and #>1.
Repeat
Compute??=—¢(x) 4, t=u(2|S|+|L)/n.
Solve a linear system to obtain a primal-dual

search direction (Ax,A4)

H(x,2) J@' (Ax]:_{rm.(m]
~ diag()J(x) -diag(cPAAL)  \reu(nd)) (1D)

where rdual('x’/i) = Vf(x) + J(X)Tl and
Voo (%, A) = —diag(A)c(x) — 1/ )e.

Line search and update

Determine
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s™ = min{ 1, min —A:Al, <0;p
A,

Compute s=0.99s™".
Repeat
x*=x+sAx, s=ps
Until ¢(x")<0.
Repeat
Xt =x+5sAx, A=A+sAk, s=pfs

<(1-as)|r,(x,4)

Untitl 49

> where
— K dual(xs l)
A= (rcm,(x,z)}
Compute error= AﬂAkﬂ G _x”)'

Set ¥=x+5Ax, A=A+sA1

Until? <& e (x: A £ € and errorse.

Note that, values of the parameter # in the PDIP
algorithm on the order of 10 appear to work well.
The line search in the PDIP method is a standard
backtracking line search, based on the norm of the

residual, and modified to ensure that 4>0 and

¢(x)<0, The backtracking parameters @ and?,
are typically chosen in the range 0.01 to 0.1, and
in the range 0.3 to 0.8, respectively (ref.(11]).
Our first goal in the PDIP algorithm is to solve
the linear system Eq. (11) on each loop. We denote

the coefficient matrix of Eq. (11) by de(x,/l), ie.,

Ho ﬂ)::( H(x,2) J(x) ]

~diag(4)J(x) —diag(c(x))

It is known that under certain assumptions, the

matrices Hu(4)  are always nonsingular{10].
Furthermore, if the problem (3) is sparse, which
means that the objective and every constraint
function each depend on a modest number of varia-
bles, then the gradient and Hessian matrices of the
objective and constraint functions are all sparse.

It follows that the matrix w4 is then likely
to be sparse, so a sparse matrix method can be
used to solve Eq. (11). As in[9], there are some
ways to solve the linear system Eq. (11). Firstly,
the linear system Eq. (11) can be solved directly
by using LU factorization method. The second ap-
proach is to use block elimination to obtain smaller

"condensed” system. Since¢*) <0 the (2, 2) block
of Eq. (11) may be eliminated to give the following
(USI+IMDx (ISI+IMD) system forAx:

2(S|+[L}
H_(x,A)Ax = -Vf(x)+ ;[ >

k=1 Cy (X)VCk (X)\J’

(12)

where a condensed matrix (%4) ig given as

H (x,4)= H(x, A+ J(x) D(x, Ay I (x),

with D(x,4) = diag(4)™ diag(-c(x)).
The second component of variable A4 in the lin-
ear system Eq. (11) is computed as

A4 = diag(c(x)) " (en (%, 4) — diag(4)J (x)Ax)

As observed, the condensed matrix :(%4) s
positive definite. Thus, the condensed system Eq.
(12) can be solved by direct methods, such as
Cholesky factorization. It is shown[9] that both the

matrices Tn™4) and H.(x4) become increas-
ingly ill-conditioned in a highly structured way as
the iteration converges. Although this ill-con-
ditioning is usually harmless[15], we still obtain
warning of ill-conditioning from Matlab when the
computation of our simulation results in Section 5
is carried out in Matlab.

In the end of this section, to avoid the ill-con-
ditioning when solving Eq. (12) we are concerned
with alternative, iterative methods for solving Eq.
(12). Gould[16] has proposed a stabilized con-
jugate-gradient (SCG) method for solving iter—
atively Eq. (12). We will use this algorithm to solve
the condensed systems as presented by Eq. (12).
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The simulation example is presented in Section 5.
For now, we present the SCG method for Eq. (12).

For simplicity of exposition, we denote fI(x.4),
J(x), D(xa;v), and

1 s g
-Vf(x)+ ;( Z:‘ o) Ve, (x))

as H, J, D, and b respectively when we present
the SCG method for solving Eq. (12). For the SCG
method presented below, we denote [ as an identity
matrix whose dimension is determined by the

context.

ALGORITHM 3. STABILIZED CONJUGATE
GRADIENTI(16]

Takeé >0:8, >0,Ax=0.w=0,2=0, 5nd Jet
v=-b.

Solve a linear system
I JTYr (v
J -D\u) \w/

v v~Ju

Update

wle| w+Du|

zZ z+u

Solve the linear system

I JrYry (v

J -Dlu) \w/
Sets=z+u,p=—-r,q:—s, and

o=rv+s'wo,=0.

Repeat
Compute 6 =0/(p"Hp+q’ Dg).

Update
Ax Ax p
z <« z + 0| i .
v v Hp
w w Dq

Solve the linear system
I J Yr (v
J -D\u “lw)

v v—Ju

Update

w|<|w+Du|

z z+u

Solve the system

ol

Update s=z+u.

T T
Compute Cnew =7 VS W,

oc=0,/0, oc=0

new new

Update

Until © <max{¢,0,,8,}.

We remark that the SCG algorithm also requires

a solving a linear system

I JYr v

[J —Dj[uj:[wj (13)
in each iteration. Observing that the linear system
Eq. (13) is near with one Eq. (11), however the lin-
ear system is well-conditioned[16], they can be
solved direct by LU factorization, i.e., the SCG
method is an efficient algorithm for ill-conditioned
linear system from the PDIP method.

It is well known that the computation of DB al-
gorithm is simple. It only requires computing first
derivatives of the constraint functions in the opti-
mization problem (2), while the PDIP method re-
quires computing both the first and second de-

rivatives of the objective and constraint functions.
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Using the gradient projection method, DB algo-
rithm solves the problem (2) iteratively, where the
convergence rate is only Q-linear[17], hence, we
can conclude that the convergence rate of the DB
algorithm is at the most Q-linear.

The purpose of this paper is to propose another
efficient algorithm in solving the non-convex pro-
gramming problem (2). It is shown[10], [9] that the
PDIP method converges at a Q-quadratic rate or
Q-superlinear rate. Moreover, the PDIP method is
an omnipresent and conspicuous feature of the
constrained  optimization landscape  today.
Therefore, solving the rate control problem (2) in
the wired-cum-wireless network by the PDIP al-
gorithm is very attractive. It is not too surprising
that the total CPU-time of the PDIP algorithm is
significantly smaller than one of the DB algorithm
when those algorithms are used to solve a simu-

lation example in Section 5.

5. NUMERICAL EXAMPLE

We now present a numerical example, which is
taken in[8], to illustrate the performance of the
PDIP algorithm in providing proportional fairness
amongst the end-to-end flows in the wired-
cum-wireless network. A median-sized network is
considered, which is composed of 4 APs, 8 MHs,
4 wired links and 8 wireless links. The network
is configured as follows

Access Point 0

2y

£ E1 | A
Access Point 3><h ¥

H

Fig. 2 The network configuration.

In this network, there are 4 APs, which are de-
noted as 0, 1, 2 and 3. The wired part of the net-
work connects the APs through the wired links,
denoted as 0, 1, 2 and 3. The capacities of the wired
links are 0.5, 0.2, 0.6 and 0.8 respectively. In each
BSS, there are 2 MHs, who connect to the network
through the AP. We denote the 8 MHs as 4, B,
C, D, E, F, G, H, and the wireless links 4, b,
c,d, e J, & and h respectively. The network
has 4 end-to-end sessions, labeled as/o, /i, /2 and

fs, and they are set up as in Table 1.

For the DB algorithm we used a small step sizes
B=0=0.15 hich are usually chosen for solving
the rate control problem of the network using gra-
dient projection method[2,3], and the stop threshold

€ is 107 Here, in the PDIP algorithm, the linear
systems Eq. (11) are solved using the Algorithm
3 (SCG algorithm) with & =107 and& =107 we
start the PDIP algorithm at initial vectors

* (logarithm of session and transmission rate)

z=2eeR” r=—cen" and take A =-1c(x)
(i=L...2]S|+|L}), Other parameter values that
we used for the PDIP method aree =107, #=10,
B=05 and a=0.01,

Our experiment was done in Matlab 7.0 on a
Pentium 4 CPU 3.00GHz, 1.00 GB of RAM running
Windows XP. Fig. 3 and Fig. 4 show the con-

vergence behavior of the DB and PDIP algorithm
for the session rates in wired links, respectively.

Table 1. The source, sink, and path of the flows

Session |Source node|Sink nodeilinks on the path
Jo E A e, 0, a
A B G b,0 2 8
J2 C F e, 32 f
£ H D h 2.1, 4d
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session £ 0
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cesgion £2
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-
J
. / session f
0.2 el . !
“
015+ Tl e i e Ssion £
0.1 - :
¢} 50 200 250

100 | . 1980
outer iteration number

Fig. 3. The convergence of the session rates in DB

algorithm.
0.45
|
0.4t 5
sesqion £ 0 H
0351 h
® /ﬁ :
o ‘i
“025_ / e e L pesgontd
. / L
i/ !
o2k f ., session {3
- ’//..\ |
(,' N |
oask A Tl - SEmORLL
' I
H
1

01 . . . . .
0 5 10 15 20 25 30 35 40
iteration number

Fig. 4. The convergence of the session rates in
PDIP algorithm.

Noting that, this simulation example has a
unique optimum solution for session rates in wired
links, but one has multiple optimum solution for
transmission rates in wireless links. We will not
present a unique solvability or not unique solv-
ability of the rate control problem (2) for trans-—
mission rates in wireless links in this paper. In fact,
we are now investigating the unique solvability of
the rate control problem in wired-~cum-wireless
network. In[8], the authors have not cared for the

transmission rates in wireless links in this simu-

lation example. To illustrate a performance of the
proposed PDIP algorithm, we compare a globally
optimum session rate solutions solved by AMPLI8]
with a solutions given by the DB and PDIP
algorithm. We also plot a rate of convergence of
the DB and PDIP algorithm, that means we plot

w_cy .
the expression ‘ngmy y ), in Fig. 5, here the

exact optimum solution is taken by AMPL, ie.,

¥ =(0.352753,0.147247,0.252753,0.200000),

and¥"is an k iterative session rate solution vector
of the DB and PDIP method.

Now we give in Table 2 -an-overview of the ex- -
act optimum solution, an approximate optimum
solution by DB algorithm, approximate optimum
solution by PDIP algorithm for the session rates,
and a required CPU-time of DB and PDIP
algorithm.

Noting that since we have not known that how
the authors of[8] have taken the parameters 8 and
6 for the DB algorithm, then our numerical result
does not completely coincide with a numerical re-
sult in[8] for the DB algorithm. The Fig. 5 indicates
that PDIP significantly enhances convergence
speed. Therefore, we can conclude that PDIP algo-
rithm may be considered as a competitive algo-

\pDIP e DB

fog 10 of the norm of session rate error

0 50 100 150 200 250
iteration number

Fig. 5. The rate of convergence in DB and PDIP
algorithm.
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Table 2. The rate of convergence in DB and PDIP

algorithm
. Exact | o ution by | Solution by
Variables |solution by DB PDIP
AMPL
Yo 0.352753 | 0.35275176 0.35275252
Y 0.147247 | 0.14724803 0.14724748
» 0.252753 | 0.25275454 0.25275252
Vs 0.200000 | 0.19999891 0.20000000
1teration 991 36
number
CPU-time 0.703 seconds|0.312 seconds

rithm to solve the rate control problems in

wired-cum-wireless network.

6. CONCLUSIONS

The PDIP algorithm is used in this paper for

solving the rate control problem in the
wired—-cum-wireless network. It is well known
that the formulated problem appears to be
non-convex, Le., it is a difficult optimization prob-
lem, and Wang, Kar and Low have proposed the
DB algorithm to solve this problem. In this paper
we showed that the PDIP algorithm is a com-
petitive algorithm with the DB algorithm to solve
the rate control problem in the wired~cum-wire-
less network. Simulation results are provided to
support our conclusions. In our future work, we
plan to investigate a unique solvability of the rate
control problem for transmission rates in wireless
links in the wired-cum-wireless network, which

depends on the topology of the wireless network.
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