DOI QR코드

DOI QR Code

Wide Tuning and Modulation Characteristics Analysis of Coupled-Ring Reflector Laser Diode

결합 링 반사기 레이저 다이오드의 광대역 파장 가변 및 변조 특성 해석

  • Yoon, Pil-Hwan (Department of Electronics and Communications Engineering, Kwangwoon University) ;
  • Kim, Su-Hyun (Department of Electronics and Communications Engineering, Kwangwoon University) ;
  • Chung, Young-Chul (Department of Electronics and Communications Engineering, Kwangwoon University)
  • 윤필환 (광운대학교 전자통신공학과) ;
  • 김수현 (광운대학교 전자통신공학과) ;
  • 정영철 (광운대학교 전자통신공학과)
  • Published : 2006.12.25

Abstract

A time-domain modeling approach is used to study characteristics of a widely tunable coupled-ring reflector (CRR) laser diode(LD). The CRR consists of a bus waveguide and two coupled ring resonators coupled to the bus without resorting to distributed Bragg grating structure. The tuning range can be a few tens of nanometers with a side mode suppression ratio exceeding 35dB through the adjustment of currents into the phase control sections in the rings. The CRR laser diode has long effective cavity length compared to conventional laser diodes. Accordingly, a broad additional resonance peak in the amplitude modulation characteristics is observed between 20 to 30 GHz, implying the extension of amplitude modulation bandwidth.

본 논문에서는 기존의 DBR 격자 기반의 파장선택성 반사기를 대체시킬 수 있는 결합 링 반사기가 집적된 레이저 다이오드를 연산자 분리 시 영역 모델을 통해서 분석한다. 결합 링 반사기는 브래그 격자(Bragg grating) 필요로 하지 않는 평판 도파로 형태의 반사기이다. 결합 링 반사기는 하나의 직선 도파로와 두 개의 결합된 형태의 링 공진기가 하나의 직선 도파로에 결합되어 있다. 위상 조절 전류의 조절에 따른 파장 가변 범위는 수십 nm 정도가 되고, 파장 가변 과정에서 부모드 억압비도 35 dB 이상이 됨을 수치 해석을 통해 확인했다. 또한 결합 링 반사기 레이저 다이오드는 종래의 레이저 다이오드에 비해서 유효 공진기 길이(Effective Cavity Length)가 매우 길기 때문에 진폭 변조 시 20-30 GHz 주파수 영역에서 추가적인 공진 특성을 보이고, 이 특성으로 인해 진폭 변조 대역폭이 상당히 향상될 수 있으리라 기대된다.

Keywords

References

  1. L. A. Coldren, 'Monolithic tunable diode lasers,' IEEE Journal on Selected Topics in Quantum Electronics, vol. 6, no. 6, pp. 988-999, 2000 https://doi.org/10.1109/2944.902147
  2. Z. Bian, B. Liu, and A. Shakouri, 'InP-Based Passive Ring-Resonator-Coupled Lasers,' IEEE Journal of Quantum Electronics. vol. 39, no. 7, pp. 859-865, 2003 https://doi.org/10.1109/JQE.2003.813222
  3. Y. Chung, D. Kim, and N. Dagli, 'Reflection properties of coupled-ring reflectors,' IEEE Journal of Lightwave Technology, vol. 24, no. 4, pp. 1865-1874, 2006 https://doi.org/10.1109/JLT.2006.871021
  4. B. Kim, Y. Chung, J. Lee, 'An efficient split-step timedomain dynamic modeling of DFB/DBRlaser diodes,' Journal of Quantum Electronics. vol. 36, no. 7, pp. 787-794, 2000 https://doi.org/10.1109/3.848349
  5. Y. Chung, D. Kim, and N. Dagli, 'Widely tunable coupledring reflector laser diode,' IEEE Photonics Technology Letters. vol. 17, no. 9, pp. 1773-1775, 2005 https://doi.org/10.1109/LPT.2005.852643
  6. B. Liu, A. Shakouri, and J. Bowers, 'Wide tunable double ring resonator coupled lasers,' IEEE Photonics Technology Letters. vol. 14, no. 7, pp. 600-602, 2002 https://doi.org/10.1109/68.998697
  7. S. J. Choi, Z. Peng, Q. Yang, E. H. Hwang, and P. D. Dapkus, 'A Semiconductor Tunable Laser Using a Wavelength Selective Reflector Based on ring Resonators,' Proceedings of Optical Fiber Conference, Post-deadline Paper PDP20, Anaheim, California, USA, 2005
  8. Jean-Pierre Weber, 'Optimization of the carrier-Induced effective index change in InGaAsP waveguide-Application to tunable Bragg filters,' IEEE Journal of Quantum Electronics, vol. 30, no. 8, pp. 1801-1816, 1994 https://doi.org/10.1109/3.301645
  9. K. Petermann, Laser diode modulation and noise (Kluwer Academic Publishers), Chap. 4, 1991
  10. G. Morthier, R. Scharz, and O. Kjebon, 'Extended modulation bandwidth of DBR and external cavity lasers by utilizing a cavity resonance for equalization,' IEEE Journal of Quantum Electronics, vol. 36, no. 12, pp. 1468-1475, 2000 https://doi.org/10.1109/3.892568
  11. L. Bach, W. Kaiser, J. P. Reithmaier, A. Forchel, M. Gioannini, V. Feies, and I. Montrosset, '22-GHz Modulation Bandwidth of Long Cavity DBR Laser by Using a Weakly Laterally Coupled Grating Fabricated by Focused Ion Beam Lithography,' IEEE Photonics Technology Letters. vol. 16, no. 1, pp. 18-20, 2004 https://doi.org/10.1109/LPT.2003.820463