Mechanisms of Insulinotropic Effect of YHB-2017 [Genistein] Isolated from fermentation Broths of Streptomyces sp.

방선균에서 유래한 YHB-2017 [Genistein]의 인슐린 분비 촉진 작용 기전

  • 곽원재 ((주)유한양행 중앙연구소) ;
  • 박유회 ((주)유한양행 중앙연구소) ;
  • 박준철 ((주)유한양행 중앙연구소) ;
  • 이병규 ((주)유한양행 중앙연구소) ;
  • 강엽 (아주대학교 의과학연구소) ;
  • 최태부 (건국대학교 미생물공학과)
  • Published : 2006.12.30

Abstract

Impaired insulin secretion from pancreatic beta-cells in response to glucose is an important feature in the pathology of non-insulin-dependent diabetes mellitus (NIDDM). In the course of screening for useful insulin secretagogues, we have isolated and identified YHB-2017 (Genistein) as a insulin secretion potentiator from fermentation broths of our in-house microbial library. The insulinotropic activity of YHB-2017 in isolated rat pancreatic islets was exerted only at high concentration of glucose (8.3-16 mM) but not at low concentration of glucose (3.3-5.5 mM). Also, in perifusion study with isolated rat pancreatic islets, YHB-2017 stimulated insulin secretion in a time-dependent manner when YHB-2017 was added to KRB buffer containing 16 mM glucose. In the presence of $200\;{\mu}M$ diazoxide and 35 mM KCI, which stimulates maximum $Ca^{2+}$ influx independently of KATP channel, YHB-2017 enhanced KATP channel-independent insulin secretion at high concentration glucose (16 mM). To elucidate the mechanisms of the glucose-dependent potentiation effect of YHB-2017, pharmacologic inhibitors for protein kinase A, protein kinase C and calcium/calmodulin kinase II were pre-treated and then the potentiation effect of YHB-2017 on insulin secretion was investigated. Pre-treatment of H89 as a PKA inhibitor had a significant inhibitory effect on YHB-2017-induced potentiation effect. Furthermore, western immunoblotting analyses revealed that YHB-2017 increased phosphorylation of PKA substrates and cAMP response element-binding protein (CREB) under high concentration of glucose. These results demonstrated that the insulinotropic effect of YHB-2017 is mediated through PKA signal pathway and activated amplifying $K_{ATP}$ channel-independent insulin secretion pathway.

본 연구에서는 췌장 베타세포의 인슐린 분비 촉진 물질로 선별된 방선균 배양액에서 유래한 YHB-2017 (genistein)의 인슐린 분비 촉진 활성의 특성을 조사하고 그 작용 기전을 밝히고자 하였다. YHB-2017는 췌장소도에서 glucose 농도가 16 mM일 때 농도 의존적으로 인슐린 분비를 대조군에 비해 2배 이상 촉진시켰으며, 5.5 mM 이하의 glucose 농도에서는 인슐린 분비 촉진 활성이 거의 없는 것으로 나타났다. MIN6 세포를 이용한 YHB-2017의 인슐린 분비 촉진 활성 특성을 분석한 결과, PKA inhibitor (H89)에 의해서 활성이 저해되었으며, 세포막의 $K_{ATP}$ channel를 배제하고 단순히 칼슘이온을 최대로 세포내로 유입시킨 조건인 diazoxide ($200\;{mu}M$)와 KCI (35 mM)를 첨가한 경우에 YHB-2017는 인슐린 분비 촉진 활성을 나타내 $K_{ATP}$ channel-independent pathway를 통한 인슐린 분비 촉진 기전을 추정할 수 있었다. 베타세포의 단백질 인산화에 대한 영향을 조사한 결과 YHB-2017는 고농도 glucose 조건에서만 PKA 기질과 cAMP response element-binding protein (CREB)의 인산화를 증가시키는 것으로 나타났고, PKC 기질의 인산화에는 영향이 없었다. 또한, YHB-2017를 18시간동안 베타세포에 처리하였으나 인슐린 유전자 발현에는 영향을 주지 않았다. 이상의 결과를 종합하여 볼 때 YHB-2017는 기존의 sulphonylurea 계열 약물과는 다른 작용 기전에 의해 췌장 베타세포에서 인슐린 분비를 촉진시키며, 그 기전은 PKA경로를 통해 amplify 신호를 활성화시키는데 관여하는 것으로 추정된다.

Keywords

References

  1. Porte, D. Jr. and S. E. Khan (2001), ${\beta}-cell$ dysfunction and failure in type 2 diabetes, Diabetes 50(Suppl 1), S160-S163 https://doi.org/10.2337/diabetes.50.2007.S160
  2. Chatterjee, M. and I. Scobie (2002), The pathogenesis of type 2 diabetes mellitus, Pract. Diab. Int. 19, 255-257 https://doi.org/10.1002/pdi.385
  3. Saltiel, A. R and C. R. Kahn (2001), Insulin signalling and the regulation of glucose and lipid metabolism, Nature 414, 799-806 https://doi.org/10.1038/414799a
  4. Henquin, J. C. (2000), Triggering and amplifying pathways of regulation of insulin secretion by glucose, Diabetes 49, 1751-1760 https://doi.org/10.2337/diabetes.49.11.1751
  5. Bratanova-Tochkova, T. K., H. Cheng, S. Daniel, S. Gunawardana, Y. J. Liu, J. M. Musa, T. Schermerhorn, S. G. Straub, H. Yajima, and G. W. G. Sharp (2002), Triggering and augmentation mechanisms, granule pools, and biphasic insulin secretion, Diabetes 51(Suppl 1), S83-S90 https://doi.org/10.2337/diabetes.51.2007.S83
  6. Thams, P., M. R. Anwar, and K Capito (2005), Glucose triggers protein kinase A-dependent insulin secretion in mouse pancreatic islets through activation of the KATP channel-dependent pathway, Eur. J. Endocrinology 152, 671-677 https://doi.org/10.1530/eje.1.01885
  7. Morral, N. (2003), Novel targets and therapeutic strategies for type 2 diabetes, Trends Endoc. Metab. 14, 169-17 https://doi.org/10.1016/S1043-2760(03)00031-6
  8. Henquin, J. C. (2004), Pathways in $\beta$-cell stimulus-secretion coupling as targets for therapeutic insulin secretagogues, Diabetes 53(Suppl 3), S48-S58 https://doi.org/10.2337/diabetes.53.suppl_3.S48
  9. Rustenbeck, I., A. Wienbergen, C. Bleck, and A. Joms (2004), Desensitization of insulin secretion by depolarizing insulin secretagogues, Diabetes 53(Suppl 3), S140-S150 https://doi.org/10.2337/diabetes.53.suppl_3.S140
  10. Nagashima, K, A. Takahashi, H. Ikeda, A. Hamasaki, N. Kuwamura, Y. Yamada, and Y. Seino (2004), Sulfonylurea and non-sulfonylurea hypoglycemic agents: pharmachological properties and tissue selectivity, Diab. Res. Clin. Prac. 66(Suppl 1), S75-S78 https://doi.org/10.1016/j.diabres.2003.12.011
  11. Kim, E. J., H. K Shin, and J. H. Park (2005), Genistein inhibits insulin-like growth factor-l receptor signaling in HT-20 human colon cancer cells: A possible mechanism of the growth inhibitory effect of genistein, J. Med. Food 8, 431-438 https://doi.org/10.1089/jmf.2005.8.431
  12. Bhathena, S. J. and M. T. Velasquez (2002), Beneficial role of dietary phytoestrogens in obesity and diabetes, Am. J. Clin. Nutr. 76, 1191-1201 https://doi.org/10.1093/ajcn/76.6.1191
  13. Wang, S. F, Q. Jiang, Y. H. Ye, Y. Li, and R. X. Tan (2005), Genistein derivatives as selective estrogen receptor modulators: Sonochemical synthesis and in vivo anti-osteoporotic action, Bioorg. Med. Chem. 13, 4880-4890 https://doi.org/10.1016/j.bmc.2005.04.082
  14. Vedavanam, K., S. Srijayanta, J. O'Reilly, A. Raman, and H. Wiseman (1999), Antioxidant action and potential antidiabetic properties of an isoflavonoid-containing soyabean phytochemical extract (SPE), Phytother. Res. 13, 601-609 https://doi.org/10.1002/(SICI)1099-1573(199911)13:7<601::AID-PTR550>3.0.CO;2-O
  15. Ambra, R., G. Rimbach, D. Fuchs, U. Wenzel, H. Daniel, and F. Virgili (2006), Genistein affects the expression of genes involved in blood pressure regulation and angiogenesis in primary human endotherial cells, Nut. Meta. Card. Diseases 16, 35-43 https://doi.org/10.1016/j.numecd.2005.03.003
  16. Kim, S., H. J. Shin, S. Y. Kim, J. H. Kim, Y. S. Lee, D. H. Kim, and M. O. Lee (2004), Genistein enhances expression of genes involved in fatty acid catabolism through activation of PPAR ${\alpha}$, Mol. Cell. Endocr. 220, 51-58 https://doi.org/10.1016/j.mce.2004.03.011
  17. Hwang, J. T, I. J. Park, J. I Shin, Y. K. Lee, S. K Lee, H. W. Baik, J. Ha, and O. J. Park (2005), Genistein, EGCG, and, capsalcm inhibit adipocyte defferentiation process via activating AMP-activated protein kinase, Biochem. Biophys. Res. Commun. 338, 433-440
  18. Ohno, T., N. Kato, C. Ishii, M. Shimizu, Y. Ito, S. Tomono, and S. Kawazu (1993), Genistein augments cAMP accumulation and insulin release in MIN6 cells, Endocrine Res. 19, 273-285 https://doi.org/10.1080/07435809309026682
  19. Jonas, J. C., T. D. Plant, P. Gilon, P. Detimary, M Nenquin, and J. C. Henquin (1995), Multiple effects and stimulation of insulin secretion by the tyrosine kinase inhibitor genistein in normal mouse islets, Br. J. Pharmacol. 114, 872-880 https://doi.org/10.1111/j.1476-5381.1995.tb13285.x
  20. Sorenson, R. L., T. C. Brelje, and C. Roth (1994), Effect of tyrosine kinase inhibitors on islets of langerhans: Evidence for tyrosine kinases in the regulation of insulin secretion, Endo. 134, 1975- 1978 https://doi.org/10.1210/en.134.4.1975
  21. Persaud, S. J., T. E. Harris, C. J. Burns, and P. M. Jones (1999), Tyrosine kinases play a permissive role in glucose-induced insulin secretion from adult rat islets, J. Mol. Endo. 22, 19-28 https://doi.org/10.1677/jme.0.0220019
  22. Zhao, Y. F., D. J. Keating, M. Hernandez, D. D. Feng, Y. Zhu, and C. Chen (2005), Long-term inhibition of protein tyrosine kinase impairs electrophysiologic activity and a rapid component of exocytosis in pancreatic $\beta$-cells, J. Mol. Endo. 35, 49-59 https://doi.org/10.1677/jme.1.01779
  23. Liu, D., W. Zhen, Z. Yang, J. D. Carter, H. Si, and K. A. Reynolds (2006), Genistein acutely stimulates insulin secretion in pancreatic $\beta$-cells through a cAMP-dependent protein kinase pathway, Diabetes 55, 1043-1050 https://doi.org/10.2337/diabetes.55.04.06.db05-1089
  24. Lee, K. P., S. Ihm, M. K. Lee, B. D. Rhee, H. K. Lee, C. S. Koh, and H. K. Min (1988), A newer method for isolation of rat pancreatic islets by ductal injection of collagenase, Kor. Diabetes 12, 147-152
  25. Furukawa, N., T. Ohta, T. Noguchi, F. Yonemori, and K. Wakitani (1999), Glucose-dependent insuJinotropic effects of JTT-608, a novel antidiabetic compound, Eur. J. Pharmacol. 371, 51-58 https://doi.org/10.1016/S0014-2999(99)00141-7
  26. Misra, U. K. and S. V. Pizzo (2005), Coordinate regulation of forskoJin-induced cellular proliferation in macrophages by protein kinase NcAMP-response element-binding protein (CREB) and Epacl-Rapl signaling, J. BioI. Chem. 280, 38276-38289 https://doi.org/10.1074/jbc.M507332200
  27. Eason, R. A. (1999), CaM kinase II: A protein kinase with extraordinary talents germane to insulin exocytosis, Diabetes 48, 675-684 https://doi.org/10.2337/diabetes.48.4.675
  28. Nesher, R., E. Anteby, M. Yedovizky, N. Warwar, N. Kaiser, and E. Cerasi (2002), $\beta$-cell protein kinases and the dynamics of the insulin response to glucose, Diabetes 51(Suppl I), S68-S73 https://doi.org/10.2337/diabetes.51.2007.S68