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In this paper, the effect of open crack on the dynamic behavior of simply supported Timoshenko beam with a moving mass
was studied. The influences of the depth and the position of the crack on the beam were studied on the dynamic behavior
of the simply supported beam system by numerical methods. The equation of motion is derived by using Lagrange's equation.
The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is modeled
as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces on the crack
section and is derived by applying fundamental fracture mechanics theory. As the depth of the crack increases, the mid-span
deflection of the Timoshenko beam with a moving mass is increased.

1. Introduction

The detection and control of damage in mechanical structures are
important concerns of engineering communities. When a structure is
subjected to damage, its dynamic response is varied due to the change
of its mechanical characteristics. The coupling effects of an open crack
and a moving mass on the structures and the machines are an important
problem both in the field of transportation and design of machining
processes. In order to study the effects of a crack on dynamic behavior
of the structures, researchers recently use the analysis method of using
the flexibility matrix."” Lee’ studied the dynamic response of a clamp-
ed-clamped beam acted upon by a moving mass. He analyzed the prob-
lem of the moving mass separated from the beam by monitoring the con-
tact forces between them. A lot of studies about the dynamic behavior
of the beam structure under the moving load and mass were reported.*’
Zheng et al® reported that when a crack is present in structure, the better
results are obtained by applying the Timoshenko beam theory than us-
ing the Euler-Bernoulli beam theory. Based on this result, studies about
the dynamic behavior of the cracked Timoshenko beam were
investigated.7']0 Recently, Mahmoud'' used an equivalent static load
approach to determine the stress intensity factors for a single or dou-
ble-edge crack in a beam subjected to a moving load. Chondros and
Dimarogonas'” studied the effect of the crack depth on the dynamic be-
havior of a cantilevered beam. They showed that increasing the crack
depth reduced the natural frequency of the beam.

In this study, the effects of a moving mass on the dynamic behavior
of the cracked simply supported beam are investigated. That is, the in-
fluences of the crack depth, the position of crack and the moving mass
have been studied on the dynamic behavior of a simply supported beam.
The simply supported beam has a circular cross-section. The crack is
assumed to be always open during the vibrations.
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2. Theory and Formulations

A uniform beam of length L applying the Timoshenko beam theo-
ry was considered. Figure 1 represents the simply supported beam acted
upon by the moving mass ,, with a constant velocity v along the

beam. Where L is the total length of the beam, x . is the position of
a crack. Figure 2 shows a circular cross-section of the cracked section.

a.and 2b are the maximum depth of a crack and the length of the crack,
respectively. Two equations of motion are derived for the two parts of

the beam located on the left and on the right of the cracked section. In
this study, the dimensionless moving mass is 0.3 and the velocity of the
moving mass is selected two values (0.8 m/s, 1.6 m/s).

2.1 Energy of beam and moving mass

By using the assumed mode method, the lateral displacement

v(x, t) of a simply supported beam and the rotation 9(x, ¢} in xy
plane respectively can be assumed to be as

1,
_@®=
N %,
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crack

Fig. 1 Geometry of the cracked simply supported beam with a moving mass
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Fig. 2 Cross-section of a cracked section
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where ¢;(¢) and d,(t) are the generalized coordinates, which are
time dependent, and u is the total number of the generalized
coordinates. ¢,;(x) and ¢;(x) are the spatial mode functions of a sim-
ply supported beam when there is no moving mass. The functions are

o x) = B, sm( ﬂi)
(3)
o, (x) = cos(%
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where Eisthe Young's modulus, A is the cross-sectional area, G

is the shear modulus of the beam material, and [is the moment of the
6(1+4v 2)
(T+6v p)

a shearing coefficient” of the circular cross-section, and v, is the

Poisson's ratio. In Fig. 1, the kinetic encrgy 7', of the beam is given
by

inertia of the beam cross-section. In addition, x =

dy;1 T v,
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where p is the mass density of the material. The strain energy of the
cracked beam can be written as
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where Eland x(GA mean the bending stiffness and the shear stiff-
ness, respectively. 7 is the number of the segments of the simply sup-
ported beam, K, stands for the additional coefficient of a rotating
spring due to the crack. In equation (5), the quantity

. dys N dy,
AY = T dx (©)

x, = ( X=X,

represents the jumps in the rotation. The kinetic energy of the moving
mass can be expressed as

T,= 3 m, BB 0200 0]
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where (-)' denotes —(% ,and (') represents 58; . Since the horizontal

velocity of the moving mass is v, the horizontal displacement of the
moving mass is

ftv dt  (0<x,<L)
A =x,=1 " ®)
0 (x,,> L)

2.2 Crack modeling

Consider the bending vibration of a uniform Timoshenko beam in
the plane, which is assumed to be a plane of symmetry for any
cross-section. The additional strain energy due to the crack leads to flex-
ibility coefficients expressed by the stress intensity factors. In addition,
the crack produces a local additional displacement 2, between the right
and left section of the crack. According to Castigliano's theorem in the
linear elastic range, these direction displacements z; under the action
of the force P, are given by the following expression,

ul.:TaP—ifbf](a)dadz ©)

The local flexibility in the presence of the width 25 of a crack is defined
by

7%7 82 [ & o
Ci=3p, ~ 3P,aP, f,bf J(@)dadz

(10)
where J(a) is the strain energy density function. The function is

7= #(KW—F K,)? a1

where E' = E/(1— vz) for the plane strain and K is the stress in-
tensity factor for the fracmre mode 1. The stress intensity factors are giv-

en by
K - L VR — 2V 1a F(g)
P TRt z i\

(12)
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where K, denotes the opening-type mode by the shear force, K, rep-
resents the opening-type mode by the bending moment. R is the radius
of the beam and
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where {= izt—% . Substituting the equations (11)~(13) into the equation

(10), the flexibility matrix due to the crack can be obtained. And the
boundary conditions of this cracked simply supported beam are
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2.3 Equation of motion

From the Lagrange's equation using the above energy functions, the
equation of motion of the system is obtained. The following dimension-
less parameters are introduced :

=T, T:ﬁ % =5,

L= UL, B,

v = MEILSZZ, M, =2 (15)
Ky IEL, §m_7/L2\/%r,

0= KGEI%LZ’ T n;li2 w= 4

where v is v/L .
Therefore, the dimensionless equations of motion in the matrix
form using the equation (15) are obtained as follows :

MbW +CbW + KbW :de
(16)
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where (-} denotes 6(25 , and the matrices of the equation (16) can be writt

en as follows :
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2.4 Modal formulation
The equation (16) can be transformed into the following equation

{a}=[M"]{n)} (19)
where
[M][ Cob (‘)’] [M][ K, Fb]
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where I represents a unit matrix. For the complex modal analysis, it
is assumed that 1, is a harmonic function of T expressed as
e @

n = (22)

where A is the eigenvalue, and @ is the corresponding mode shape.
From the eigenvalues obtained form the Eqgs. (19)~(22), the frequencies

of the beam can be obtained.

3. Numerical Results and Discussion

In this study, the dynamic behaviors of the cracked simply sup-
ported beam influenced by the moving mass, the crack severity, and the
position of a crack were computed by the forth order Runge-Kutta
method.

The simply supported beam under analysis had the following prop-
erties : the length of the beam I = 0.8 m, radius of the beam R = 0.1
m, Poisson's ratio v, = 0.3, Young's modulus £=2.1x1011 Paand
material density p = 7860 kg/m3. The numerical results for the
mid-span deflection and frequencies of the beam were obtained for the
first mode of vibration.
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Fig. 3(a) Mid-span deflection of the cracked beam with moving mass
(M,=03, 5,=3/8 v=08ms)
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Fig. 3(b) Mid-span deflection of the cracked beam with moving mass( 4,
=03, §,.=3/8, v=1.6m/s)

3.1 Results for mid-span deflection

Fig. 3 shows the dimensionless mid-span deflection of a cracked
beam with moving mass /,, = 0.3 and the crack position ¢, =3/8. In
Fig. 3, the horizontal axis scale was the position of the moving mass
and the axis of the ordinates were the scale of the mid-span deflection
of the beam. Figs. 3(a) and (b) show the mid-span deflection of a cracked
beam when the velocity of a moving mass v was in the two cases of
0.8 m/s and 1.6 m/s, respectively. Generally, the mid-span deflection
of a simply supported beam is proportional to the crack depth. As the
crack depth increases, the position of the moving mass that makes the
maximum mid-span deflection of the simply supported beam was
moved to the rear bound of the beam. In Fig. 3(a), the difference of max-
imum mid-span deflection of the beam in the two cases of crack depth

Cp=0.05and C,=0.10 was about 6.12 %. In Fig. 3(b), the differ-

ence of maximum mid-span deflection of the beam in the two case of
crack depth C,,=0.05and C,=0.10 was about 8.37 %.

Fig. 4 represents the variation of the mid-span deflection of a
cracked beam with a moving mass according to the crack positions for

v=08m/sand C,=0.1. These results mean that when the crack posi-

tion was 0.5 its effect was the largest on the mid-span deflection of the
beam.

Fig. 5 makes a comparison between mid-span deflection of

Euler-Bernoulli beam and Timoshenko beam for the effect of a moving
mass.

3.2 Results for frequency
Fig. 6 and Fig. 7 show the frequencies of the cracked beam with a
moving mass. In Fig. 6, the crack position &, was 3/8 and the velocity

of amoving mass v was 0.8 m/s. As shown in this figure, the frequen-
cies of the simply supported beam were in inverse proportion to the-

3.0x10°

2.0x10°

1.0x10°

0.0

-1.0x10°

Mid-span deflection (w)

-2.0x10°

0.0 0.2 0.4 0.6 0.8 1.0
Position of moving mass (&)

Fig. 4 Mid-span deflection of the cracked beam according to the crack posi-
tion ( Cp, =0.1)
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Fig. 6 Frequency vs. position of moving mass ; variation of crack depth
(M,=03, 3_=3/8: 1" mode)

crack depth. Fig. 7 represents the frequencies of the cracked beam with
a moving mass according to the variation of the crack position. When
the crack position existed in the center of the simply supported beam,
the frequency had the smallest value. The difference of frequencies of
the cracked beam in the two cases of ¢, = 1/8and ¢ _ = 7/8 was about
4.12 %,

Fig. 8 compares the frequencies of Euler-Bernoulli beam and
Timoshenko beam for the first mode and the second mode. When the
beam had no moving mass, the frequency was the natural frequency of
the beam. When the Timoshenko beam had the crack and the moving
mass, the frequency had the smallest value.
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Fig. 7 Frequency vs. position of moving mass ; variation of crack position
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Fig. 8(a) Frequency vs. position of moving mass : (F1 ; without moving
mass cracked Timoshenko beam, F2 (Ref. 2) ; without moving mass
cracked Euler beam, F3 (Ref. 4) ; with moving mass cracked Euler beam,
F4 ; with moving mass un-cracked Timoshenko beam) : 1% mode
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Fig. 8(b) Frequency vs. position of moving mass : (F1 ; without moving
mass cracked Timoshenko beam, F2 (Ref. 2) ; without moving mass
cracked Euler beam, F3 (Ref. 4) ; with moving mass cracked Euler beam,
F4 ; with moving mass un-cracked Timoshenko beam) : 2" mode

As shown in this study, the dynamic behavior of the simply sup-
ported cracked beam according to the effect of a crack had not a striking
change.14 But, these data of the Table 1 will contribute to the stability
estimation of the structures of a cracked beam with a moving mass.

Table | The natural frequencies of the cracked Timoshenko beam

Case Crack Crack Natural frequencies ( 1/71)
N depth position
NG B¢ B S
18 1464 5021 9520
3/8 1428 4988  9.482
1 0.05
12 1420 5025 9513
3/4 1439 4926  9.450
118 1461 4997 9518
3/8 1251 4868  9.441
2 0.1 12 1230 5022 9521
3/4 1288 4542 9389
18 1439 5002 9511
3/8 07980 4812  9.435
3 0.15
12 05769 5023  9.414
3/4 1047 4540 9356
Uncracked
4 fleracke 1466 5027  9.623
beam

In Table 1, we will identify that the natural frequencies of the cracked
beam are almost equal values in the second mode at the crack position

t .= 1/2. The result is the influence of the mode shape of the simply
supported beam.

4. Conclusions

In this paper, the influences of the crack severity and moving mass have
been studied on the dynamic behavior of the cracked simply supported
beam by the numerical method. The cracked beam was treated as two un-
damaged segments connected by a rotational elastic spring at the crack
section. When the velocity of the moving mass was constant, the influences
of the moving mass, the crack severity, the position of the crack, and the
coupling of these factors on the frequencies and mid-span deflection of the
simply supported Timoshenko beam were depicted. The main conclusions
are the following.

(1) When the moving mass is constant, the mid-span deflection of cracked
beam is proportional to the crack depth.

(2) As the crack depth increases, the position of the moving mass that
makes the maximum mid-span deflection of the beam is moved to the rear
bound of the beam.

(3) When the crack position is 0.5, its effect is the largest on the mid-span
deflection of the cracked simply supported beam.

(4) When the crack position exists in the center of the bear, its frequency
has the smallest value. And totally, the frequencies of the beam are in in-
verse proportion to the crack depth.

(5) When the crack position exists at the node of the each mode of vi-
bration, the characteristics of the first mode of vibration is very important
to estimate the stability of a crack beam.
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