DOI QR코드

DOI QR Code

Differentially Expressed Genes in Hemocytes of Vibrio harveyi-challenged Shrimp Penaeus monodon

  • Somboonwiwat, Kunlaya (Shrimp Molecular Biology and Genomics Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University) ;
  • Supungul, Premruethai (Shrimp Molecular Biology and Genomics Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University) ;
  • Rimphanitchayakit, Vichien (Shrimp Molecular Biology and Genomics Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University) ;
  • Aoki, Takashi (Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology) ;
  • Hirono, Ikuo (Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology) ;
  • Tassanakajon, Anchalee (Shrimp Molecular Biology and Genomics Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University)
  • Received : 2005.07.08
  • Accepted : 2005.09.28
  • Published : 2006.01.31

Abstract

Differential Display PCR technique (DD-PCR) was used for the analysis of altered gene expression in hemocytes of Vibrio harveyi-infected Penaeus monodon. Forty-four combinations of arbitrary and oligo(dT) primers were used to screen for differentially expressed genes. A total of 79 differentially expressed bands could be identified from 33 primer combinations. These included 48 bands (61%) whose expression level increased and 31 bands (39%) decreased after V. harveyi challenge. Subsequently, forty-eight differential display fragments were successfully reamplified and cloned. A total of 267 clones were randomly selected and sequenced. The sequence analysis showed that 85 (31%) out of 267 clones were matched with sequences in the GenBank database which represented 24 different genes with known functions. Among the known genes, glucose transporter 1, interferon-related developmental regulator 1, lysozyme, profilin, SERPINB3, were selected for further confirmation of their differentially expression patterns by real-time PCR. The results showed increasing in expression level of the selected genes in shrimp hemocytes after microbial challenge suggesting the involvement of such genes in bacterial response in shrimp. The anti-lipopolysaccharide factor type 3 (ALFPm3) gene, previously reported in P. monodon (Supungul et al., 2002) was found among the up-regulated genes but diversity due to amino acid changes was observed. Increase in ALFPm3 transcripts upon V. harveyi injection is in accordance with that found in the previous study.

Keywords

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Astrofsky, K. M., Roux, M. M., Klimpel, K. R., Fox, J. G. and Dhar, A. K. (2002) Isolation of differentially expressed genes from white spot virus (WSV) infected Pacific blue shrimp (Penaeus stylirostris). Arch. Virol. 147, 1799-1812 https://doi.org/10.1007/s00705-002-0845-z
  3. Bachere, E., Gueguen, Y., Gonzalez, M., de Lorgeril, J., Garnier, J. and Romestand, B. (2004) Insights into the anti-microbial defense of marine invertebrates: the penaeid shrimps and the oyster Crassostrea gigas. Immunol. Rev. 198, 149-168 https://doi.org/10.1111/j.0105-2896.2004.00115.x
  4. Baily-Brook, J. H. and Moss, S. M. (1992) Penaeid taxonomy, biology and zoogeography; in Marine Shrimp Culture: Principles and Practices, Fast, A. W. and Lester, L. J. (eds.), pp. 9-27, Elsevier Science Publishers, Amsterdam, Netherlands
  5. Buanne, P., Incerti, B., Guardavaccaro, D., Avvantaggiato, V., Simeone, A. and Tirone, F. (1998) Cloning of the human interferon-related developmental regulator (IFRD1) gene coding for the PC4 protein, a member of a novel family of developmentally regulated genes. Genomics 51, 233-242 https://doi.org/10.1006/geno.1998.5260
  6. de Lorgeril, J., Saulnier, D., Janech, M. G., Gueguen, Y. and Bachere, E. (2005) Identification of genes that are differentially expressed in hemocytes of the Pacific blue shrimp (Litopenaeus stylirostris) surviving an infection with Vibrio penaeicida. Physiol. Genomics 21, 174-183 https://doi.org/10.1152/physiolgenomics.00281.2004
  7. Diatchenko, L., Lau, Y. F., Campbell, A. P., Chenchik, A., Moqadam, F., Huang, B., Lukyanov, S., Lukyanov, K., Gurskaya, N., Sverdlov, E. D. and Siebert, P. D. (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93, 6025-6030 https://doi.org/10.1073/pnas.93.12.6025
  8. Fu, Y., Maianu, L., Melbert, B. R. and Garvey, W. T. (2004) Facilitative glucose transporter gene expression in human lymphocytes, monocytes, and macrophages: a role for GLUT isoforms 1, 3, and 5 in the immune response and foam cell formation. Blood Cells Mol. Dis. 32, 182-190 https://doi.org/10.1016/j.bcmd.2003.09.002
  9. Gish, W. and States, D. J. (1993) Identification of protein coding regions by database similarity search. Nature Genet. 3, 266-272 https://doi.org/10.1038/ng0393-266
  10. Joost, H. G., Bell, G. I., Best, J. D., Birnbaum, M. J., Charron, M. J., Chen, Y. T., Doege, H., James, D. E., Lodish, H. F., Moley, K. H., Moley, J. F., Mueckler, M., Rogers, S., Schurmann, A., Seino, S. and Thorens, B. (2002) Nomenclature of the GLUT/ SLC2A family of sugar/polyol transport facilitators. Am. J. Physiol. Endocrinol. Metab. 282, 974-976 https://doi.org/10.1152/ajpendo.00407.2001
  11. He, N., Qin, Q. and Xu, X. (2005) Differential profile of genes expressed in hemocytes of White Spot Syndrome Virusresistant shrimp (Penaeus japonicus) by combining suppression subtractive hybridization and differential hybridization. Antiviral Res. 66, 39-45 https://doi.org/10.1016/j.antiviral.2004.12.010
  12. Hikima, S., Hikima, J., Rojtinnakorn, J., Hirono, I. and Aoki, T. (2003) Characterization and function of kuruma shrimp lysozyme possessing lytic activity against Vibrio species. Gene 316, 187-195 https://doi.org/10.1016/S0378-1119(03)00761-3
  13. Hruz, P. W. and Mueckler, M. M. (2001) Structural analysis of the GLUT1 facilitative glucose transporter. Mol. Membr. Biol. 18, 247-256 https://doi.org/10.1080/09687680110090456
  14. Iwanaga, S., Kawabata, S. and Muta, T. (1998) New types of clotting factors and defense molecules found in horseshoe crab hemolymph: their structures and functions. J. Biochem. (Tokyo) 123, 1-15 https://doi.org/10.1093/oxfordjournals.jbchem.a021894
  15. Iwanaga, S. (2002) The molecular basis of innate immunity in the horseshoe crab. Curr. Opin. Immunol. 14, 87-95 https://doi.org/10.1016/S0952-7915(01)00302-8
  16. Jarasrassamee, B., Supungul, P., Panyim, S., Klinbunga, S., Rimphanitchayakit, V. and Tassanakajon, A. (2005) Recombinant expression and characterization of five-domain Kazal-type serine proteinase inhibitor of black tiger shrimp (Penaeus monodon). Mar. Biotechnol. (NY) 7, 46-52 https://doi.org/10.1007/s10126-004-0100-6
  17. Kanost, M. R. (1999) Serine proteinase inhibitors in arthropod immunity. Dev. Comp. Immunol. 23, 291-301 https://doi.org/10.1016/S0145-305X(99)00012-9
  18. Kornmann, B., Preitner, N., Rifat, D., Fleury-Olela, F. and Schibler, U. (2001) Analysis of circadian liver gene expression by ADDER, a highly sensitive method for the display of differentially expressed mRNAs. Nucleic Acids Res. 29, 51-51 https://doi.org/10.1093/nar/29.11.e51
  19. Luo, T., Zhang, X., Shao, Z. and Xu, X. (2003) PmAV, a novel gene involved in virus resistance of shrimp Penaeus monodon. FEBS Lett. 551, 53-57 https://doi.org/10.1016/S0014-5793(03)00891-3
  20. Mathieu-Daude, F., Cheng, R., Welsh, J. and McClelland, M. (1996) Screening of differentially amplified cDNA products from RNA arbitrarily primed PCR fingerprints using single strand conformation polymorphism (SSCP) gels. Nucleic Acids Res. 24, 1504-1507 https://doi.org/10.1093/nar/24.8.1504
  21. Micheli, L., Leonardi, L., Conti, F., Buanne, P., Canu, N., Caruso, M. and Tirone, F. (2005) PC4 coactivates MyoD by relieving the histone deacetylase 4-mediated inhibition of myocyte enhancer factor 2C. Mol. Cell. Biol. 25, 2242-2259 https://doi.org/10.1128/MCB.25.6.2242-2259.2005
  22. Pfaffl, M. W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, 45 https://doi.org/10.1093/nar/29.9.e45
  23. Rojtinnakorn, J., Hirono, I., Itami, T., Takahashi, Y. and Aoki, T. (2002) Gene expression in haemocytes of kuruma prawn, Penaeus japonicus, in response to infection with WSSV by EST approach. Fish Shellfish Immunol. 13, 69-83 https://doi.org/10.1006/fsim.2001.0382
  24. Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory Press, New York, USA
  25. Saulnier, D., Haffner, P., Goarant, C., Levy, P. and Ansquer, D. (2000) Experimental infection models for shrimp vibriosis studies: a review. Aquaculture 191, 133-144 https://doi.org/10.1016/S0044-8486(00)00423-3
  26. Schick, C., Bromme, D., Bartuski, A. J., Uemura, Y., Schechter, N. M. and Silverman, G. A. (1998) The reactive site loop of the serpin SCCA1 is essential for cysteine proteinase inhibition. Proc. Natl. Acad. Sci. USA 95, 13465-13470 https://doi.org/10.1073/pnas.95.23.13465
  27. Shen, Y. Q., Xiang, J. H., Wang, B., Li, F. H. and Tong, W. (2004) Discovery of immune related factors in Fenneropenaeus chinesis by annotation of ESTs. Prog. Nat. Sci. 14, 47-54 https://doi.org/10.1080/10020070412331343131
  28. Shtrichman, R. and Samuel, C. E. (2001) The role of gamma interferon in antimicrobial immunity. Curr. Opin. Microbiol. 4, 251-259 https://doi.org/10.1016/S1369-5274(00)00199-5
  29. Smith, V. J., Brown, J. H. and Hauton, C. (2003) Immunostimulation in crustaceans: does it really protect against infection? Fish Shellfish Immunol. 15, 71-90 https://doi.org/10.1016/S1050-4648(02)00140-7
  30. Somboonwiwat, K., Marcos, M., Tassanakajon, A., Klinbunga, S., Aumelas, A., Romestand, B., Gueguen, Y., Boze, H., Moulin, G. and Bachere, E. (2005) Recombinant expression and antimicrobial activity of anti-lipopolysaccharide factor (ALF) from the black tiger shrimp Penaeus monodon. Dev. Comp. Immunol. 29, 841-851 https://doi.org/10.1016/j.dci.2005.02.004
  31. Soowannayan, C., Flegel, T. W., Sithigorngul, P., Slater, J., Hyatt, A., Cramerri, S., Wise, T., Crane, M. S., Cowley, J. A., McCulloch, R. J. and Walker, P. J. (2003) Detection and differentiation of yellow head complex viruses using monoclonal antibodies. Dis. Aquat. Organ. 57, 193-200 https://doi.org/10.3354/dao057193
  32. Sotelo-Mundo, R. R., Islas-Osuna, M. A., de-la-Re-Vega, E., Hernandez-Lopez, J., Vargas-Albores, F. and Yepiz-Plascencia, G. (2003) cDNA cloning of the lysozyme of the white shrimp Penaeus vannamei. Fish Shellfish Immunol. 15, 325-331 https://doi.org/10.1016/S1050-4648(02)00176-6
  33. Sritunyalucksana, K. and Soderhäll, K. (2000) The proPO and clotting system in crustaceans. Aquaculture 191, 53-69 https://doi.org/10.1016/S0044-8486(00)00411-7
  34. Supungul, P., Klinbunga, S., Pichyangkura, R., Jitrapakdee, S., Hirono, I., Aoki, T. and Tassanakajon, A. (2002) Identification of immune-related genes in hemocytes of black tiger shrimp (Penaeus monodon). Mar. Biotechnol. (NY) 4, 487-494 https://doi.org/10.1007/s10126-002-0043-8
  35. Supungul, P., Klinbunga, S., Pichyangkura, R., Hirono, I., Aoki, T. and Tassanakajon, A. (2004) Antimicrobial peptides discovered in the black tiger shrimp Penaeus monodon using the EST approach. Dis. Aquat. Organ. 61, 123-135 https://doi.org/10.3354/dao061123
  36. Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  37. Vogeli-Lang, R., Burckert, N, Boller, T and Wiemken, A. (1996) Rapid selection and classification of positive clones generated by mRNA differential display. Nucleic Acids Res. 24, 1385-1386 https://doi.org/10.1093/nar/24.7.1385
  38. Wertheimer, E., Sasson, S., Cerasi, E. and Ben-Neriah, Y. (1991) The ubiquitous glucose transporter GLUT-1 belongs to the glucose-regulated protein family of stress-inducible proteins. Proc. Natl. Acad. Sci. USA 88, 2525-2529 https://doi.org/10.1073/pnas.88.6.2525
  39. Wilkes, D. E. and Otto, J. J. (2000) Molecular cloning of profilin from Tetrahymena thermophila. Gene 246, 295-301 https://doi.org/10.1016/S0378-1119(00)00097-4
  40. Witke, W. (2004) The role of profilin complexes in cell motility and other cellular processes. Trends. Cell. Biol. 14, 461-469 https://doi.org/10.1016/j.tcb.2004.07.003
  41. Wongteerasupaya, C., Pungchai, P., Withyachumnarnkul, B., Boonsaeng, V., Panyim, S., Flegel, T. W. and Walker, P. J. (2003) High variation in repetitive DNA fragment length for white spot syndrome virus (WSSV) isolates in Thailand. Dis. Aquat. Organ. 54, 253-257 https://doi.org/10.3354/dao054253
  42. Zhu, Y., Wang, Y., Gorman, M. J., Jiang, H. and Kanost, M. R. (2003) Manduca sexta serpin-3 regulates prophenoloxidase activation in response to infection by inhibiting prophenoloxidaseactivating proteinases. J. Biol. Chem. 278, 46556-46564 https://doi.org/10.1074/jbc.M309682200

Cited by

  1. Polymorphisms of anti-lipopolysaccharide factors in the swimming crab Portunus trituberculatus and their association with resistance/susceptibility to Vibrio alginolyticus vol.34, pp.6, 2013, https://doi.org/10.1016/j.fsi.2013.03.373
  2. Protein profiling of hemocytes from the terrestrial crustacean Armadillidium vulgare, vol.32, pp.8, 2008, https://doi.org/10.1016/j.dci.2008.01.007
  3. Expression of immune-related genes in the digestive organ of shrimp, Penaeus monodon, after an oral infection by Vibrio harveyi vol.34, pp.1, 2010, https://doi.org/10.1016/j.dci.2009.07.007
  4. Calmodulin is a stress and immune response gene in Chinese mitten crab Eriocheir sinensis vol.40, pp.1, 2014, https://doi.org/10.1016/j.fsi.2014.06.027
  5. Immune related transcriptional responses and performance of Litopenaeus vannamei post-larvae fed on dietary probiotic PrimaLac® vol.55, 2016, https://doi.org/10.1016/j.fsi.2016.06.053
  6. Characterization of two isoforms of antiliopolysacchride factors (Sp-ALFs) from the mud crab Scylla paramamosain vol.33, pp.1, 2012, https://doi.org/10.1016/j.fsi.2012.03.014
  7. Fatty acid binding protein FABP3 from Chinese mitten crab Eriocheir sinensis participates in antimicrobial responses vol.43, pp.1, 2015, https://doi.org/10.1016/j.fsi.2014.12.034
  8. Identification, characterization and functional analysis of a serine protease inhibitor (Lvserpin) from the Pacific white shrimp, Litopenaeus vannamei vol.43, pp.1, 2014, https://doi.org/10.1016/j.dci.2013.10.012
  9. Cationic Antimicrobial Peptides in Penaeid Shrimp vol.12, pp.5, 2010, https://doi.org/10.1007/s10126-010-9288-9
  10. cDNA Microarray Analyses Reveal Candidate Marker Genes for the Detection of Ascidian Disease in Korea vol.24, pp.12, 2007, https://doi.org/10.2108/zsj.24.1231
  11. Gene expression patterns of abalone, Haliotis tuberculata, during successive infections by the pathogen Vibrio harveyi vol.105, pp.3, 2010, https://doi.org/10.1016/j.jip.2010.08.001
  12. High salinity induced expression profiling of differentially expressed genes in shrimp (Penaeus monodon) vol.41, pp.9, 2014, https://doi.org/10.1007/s11033-014-3510-1
  13. Comparison of Gene Expression Profiles of Fenneropenaeus chinensis Challenged with WSSV and Vibrio vol.10, pp.6, 2008, https://doi.org/10.1007/s10126-008-9105-x
  14. The glucose transporter 1 -GLUT1- from the white shrimp Litopenaeus vannamei is up-regulated during hypoxia vol.41, pp.12, 2014, https://doi.org/10.1007/s11033-014-3682-8
  15. Anti-lipopolysaccharide factors in the American lobster Homarus americanus: Molecular characterization and transcriptional response to Vibrio fluvialis challenge vol.3, pp.4, 2008, https://doi.org/10.1016/j.cbd.2008.07.001
  16. PtSerpin from the swimming crab Portunus trituberculatus, a putative regulator of prophenoloxidase activation with antibacterial activity vol.39, pp.2, 2014, https://doi.org/10.1016/j.fsi.2014.05.018
  17. Effect of galangal (Alpinia galanga Linn.) extract on the expression of immune-related genes and Vibrio harveyi resistance in Pacific white shrimp (Litopenaeus vannamei) vol.23, pp.1, 2015, https://doi.org/10.1007/s10499-014-9822-2
  18. Microarray Analyses of Shrimp Immune Responses vol.13, pp.4, 2011, https://doi.org/10.1007/s10126-010-9291-1
  19. Identification of genes expressed in juvenile Haliotis rufescens in response to different copper concentrations in the north of Chile under controlled conditions vol.62, pp.12, 2011, https://doi.org/10.1016/j.marpolbul.2011.09.023
  20. A relationship between antimicrobial peptide gene expression and capacity of a selected shrimp line to survive a Vibrio infection vol.45, pp.12, 2008, https://doi.org/10.1016/j.molimm.2008.04.002
  21. Differential gene expression in black tiger shrimp, Penaeus monodon, following administration of oxytetracycline and oxolinic acid vol.33, pp.10, 2009, https://doi.org/10.1016/j.dci.2009.05.010
  22. Discovery of immune molecules and their crucial functions in shrimp immunity vol.34, pp.4, 2013, https://doi.org/10.1016/j.fsi.2012.09.021
  23. Comparison of Protein Expression Profiles of the Hepatopancreas in Fenneropenaeus chinensis Challenged with Heat-inactivated Vibrio anguillarum and White Spot Syndrome Virus vol.16, pp.1, 2014, https://doi.org/10.1007/s10126-013-9538-8
  24. A Toll receptor in shrimp vol.44, pp.8, 2007, https://doi.org/10.1016/j.molimm.2006.09.021
  25. Antilipopolysaccharide factor (ALF) of mud crab Scylla paramamosain: Molecular cloning, genomic organization and the antimicrobial activity of its synthetic LPS binding domain vol.44, pp.12, 2007, https://doi.org/10.1016/j.molimm.2007.01.028
  26. Cationic Antimicrobial Peptides in Penaeid Shrimp vol.13, pp.4, 2011, https://doi.org/10.1007/s10126-011-9381-8
  27. Antivibrio activity of recombinant lysozyme expressed from black tiger shrimp, Penaeus monodon vol.272, pp.1-4, 2007, https://doi.org/10.1016/j.aquaculture.2007.08.055
  28. Antibacterial activity of serine protease inhibitor 1 from kuruma shrimp Marsupenaeus japonicus vol.44, pp.2, 2014, https://doi.org/10.1016/j.dci.2014.01.002
  29. Differential gene expression in bacterial symbionts from loliginid squids demonstrates variation between mutualistic and environmental niches vol.2, pp.4, 2010, https://doi.org/10.1111/j.1758-2229.2009.00077.x
  30. Gene expression and characterization of a serine proteinase inhibitor PmSERPIN8 from the black tiger shrimp Penaeus monodon vol.33, pp.2, 2012, https://doi.org/10.1016/j.fsi.2012.05.005
  31. Molecular cloning, genomic structure and antimicrobial activity of PtALF7, a unique isoform of anti-lipopolysaccharide factor from the swimming crab Portunus trituberculatus vol.34, pp.2, 2013, https://doi.org/10.1016/j.fsi.2012.12.002
  32. Gene expression and activity of carbonic anhydrase in salinity stressed Penaeus monodon vol.152, pp.2, 2009, https://doi.org/10.1016/j.cbpa.2008.10.001
  33. The study on biodefence of fish and shellfish vol.73, pp.3, 2007, https://doi.org/10.2331/suisan.73.400
  34. Contributions of functional genomics and proteomics to the study of immune responses in the Pacific white leg shrimp Litopenaeus vannamei vol.128, pp.1-3, 2009, https://doi.org/10.1016/j.vetimm.2008.10.329
  35. Identification and characterization of a serine protease inhibitor (PtSerpin) in the swimming crab Portunus trituberculatus vol.32, pp.4, 2012, https://doi.org/10.1016/j.fsi.2012.01.002
  36. Identification and functional study of a shrimp Relish homologue vol.27, pp.2, 2009, https://doi.org/10.1016/j.fsi.2009.05.003
  37. PmSERPIN3 from black tiger shrimp Penaeus monodon is capable of controlling the proPO system vol.41, pp.2, 2013, https://doi.org/10.1016/j.dci.2013.04.022
  38. Three isoforms of anti-lipopolysaccharide factor identified from eyestalk cDNA library of swimming crab Portunus trituberculatus vol.30, pp.2, 2011, https://doi.org/10.1016/j.fsi.2010.12.005
  39. The expression of prophenoloxidase mRNA in red swamp crayfish, Procambarus clarkii, when it was challenged vol.99, pp.6, 2012, https://doi.org/10.1016/j.ygeno.2012.04.001
  40. Vibrio harveyi Adheres to and Penetrates Tissues of the European Abalone Haliotis tuberculata within the First Hours of Contact vol.80, pp.20, 2014, https://doi.org/10.1128/AEM.01036-14
  41. The State of “Omics” Research for Farmed Penaeids: Advances in Research and Impediments to Industry Utilization vol.9, pp.1664-8021, 2018, https://doi.org/10.3389/fgene.2018.00282