DOI QR코드

DOI QR Code

Molecular Control of Gene Co-suppression in Transgenic Soybean via Particle Bombardment

  • El-Shemy, Hany A. (National Agricultural Research Center for Western Region) ;
  • Khalafalla, Mutasim M. (National Agricultural Research Center for Western Region) ;
  • Fujita, Kounosuke (Graduate School of Biosphere Sciences, Hiroshima University) ;
  • Ishimoto, Masao (National Agricultural Research Center for Western Region)
  • Received : 2005.09.27
  • Accepted : 2005.10.21
  • Published : 2006.01.31

Abstract

Molecular co-suppression phenomena are important to consider in transgene experiments. Embryogenic cells were obtained from immature cotyledons and engineered with two different gene constructs (pHV and pHVS) through particle bombardment. Both constructs contain a gene conferring resistance to hygromycin (hpt) as a selective marker and a modified glycinin (11S globulin) gene (V3-1) as a target. sGFP(S65T) as a reporter gene was, however, inserted into the flanking region of the V3-1 gene (pHVS). Fluorescence microscopic screening after the selection of hygromycin, identified clearly the expression of sGFP(S65T) in the transformed soybean embryos bombarded with the pHVS construct. Stable integration of the transgenes was confirmed by polymerase chain reaction (PCR) and Southern blot analysis. Seeds of transgenic plants obtained from the pHV construct frequently lacked an accumulation of endogenous glycinin, which is encoded by homologous genes to the target gene V3-1. Most of the transgenic plants expressing sGFP(S65T) showed highly accumulation of glycinin. The expression of sGFP(S65T) and V3-1 inherits into the next generations. sGFP(S65T) as a reporter gene may be useful to increase the transformation efficiency of transgenic soybean with avoiding gene co-suppression.

Keywords

References

  1. Aragao, F. J. L., Sarokin, L., Vianna, G. R. and Rech, E. L. (2000) Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max (L.) Merril] plants at a high frequency. Ther. Appl. Genet. 101, 1-6. https://doi.org/10.1007/s001220051441
  2. Barz, T., Ackermann, K. and Pyerin, W. (2002) A positive control for the green Fluorescent protein-based one-hybrid system. Anal. Biochem. 304, 117-121. https://doi.org/10.1006/abio.2002.5618
  3. Carthew, R. W. (2001) Gene silencing by double-stranded RNA. Curr. Opin. Cell Biol. 13, 244-248. https://doi.org/10.1016/S0955-0674(00)00204-0
  4. Chiu, W-L., Niwa, Y., Zeng, W., Hirano, T., Kobayashi, H. and Sheen, J. (1996) Engineered GFP as a vital reporter in plants. Current Biol. 6, 325-330. https://doi.org/10.1016/S0960-9822(02)00483-9
  5. Dai, S., Zheng, P., Marmey, P., Zhang, S., Tian, W., Chen, S., Beachy, R. N. and Fauquet, C. (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol. Breed. 7, 25-33. https://doi.org/10.1023/A:1009687511633
  6. Draper, J. and Scott, R. (1988) The isolation of plant nucleic acids in Plant Genetic Transformation and Gene Expression, Draper J, Scott R, Armitage P, Walden, R (eds.) pp. 212-214, Blackwell Scientific Publications, London, U.K.
  7. Elliot, A., Campbell, J., Brettell, I. and Grof, P. (1998) Agrobacterium-mediated transformation of sugarcane using GFP as a screenable marker. Aust. J. Plant Physiol. 25, 739- 743. https://doi.org/10.1071/PP98066
  8. El-Shemy, H. A., Khalafalla, M. M., katsube-Tanaka, T., Utsumi, S. and Ishimoto, M. (2004) Isolation of soybean plants with stable transgene expression by visual selection based on green fluorescent protein. Mol. Breed. 14, 227-238. https://doi.org/10.1023/B:MOLB.0000047772.48746.f4
  9. Finer, J. and Nagasawa, A. (1988) Development of an embryogenic suspension culture of soybean [Glycine max (L.) Merrill]. Plant Cell. Tiss. Org. Cult. 15, 125-136. https://doi.org/10.1007/BF00035754
  10. Finer, J. J. and Mcmullen, M. D. (1991) Transformation of soybean via particle Bombardment of embryogenic suspention culture tissue. In Vitro Cell. Dev. Biol. 27, 175-182. https://doi.org/10.1007/BF02632213
  11. Gamborg, O., Miller, R. and Ojima, K. (1968) Nutrient requirements of suspension cultures of soybean root cell. Exp. Cell Res. 50, 151-158. https://doi.org/10.1016/0014-4827(68)90403-5
  12. Hadi, M. Z., McMullen, M. D. and Finer J. J. (1996) Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Rep. 15, 500-505. https://doi.org/10.1007/BF00232982
  13. Hinchee, M. A. W., Conner-Ward, D. V., Newell, C. A., McDonnell, R. E., Sato, S. J., Gasser, C. S., Fischhoff, D. A., Re, D. B., Fraley, R. T. and Horsch, R. B. (1988) Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/Technology 6, 915-922. https://doi.org/10.1038/nbt0888-915
  14. Jefferson, R. A. (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5, 387-405. https://doi.org/10.1007/BF02667740
  15. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature 277, 680-685.
  16. Lessard, P. A., Kulaveerasingam, H., York, G. M., Strong, A. and Sinskey, A. J. (2002) Manipulating gene expression for the metabolic engineering of Plants. Metabolic Engineering 4, 67-79. https://doi.org/10.1006/mben.2001.0210
  17. Luff, B., Pawlowski, L. and Bende, J. (1999) An inverted repeat triggers cytosine methylation of identical sequences in Arabidopsis. Mol. Cell 3, 505-511. https://doi.org/10.1016/S1097-2765(00)80478-5
  18. Matzke, A. and Matzke, M. (1995) Trans-inactivation of homologous sequences in Nicotiana tabacum; in Gene Silencing in Higher Plants and Related Phenomena in Other Eukaryotes, Meyer, P. (ed.) pp. 1-14, Springer, Berlin, Germany.
  19. Matzke, M., Matzke, A. J. M. and Kooter, J. M. (2001) RNA: guiding gene silencing. Science 293, 1080-1083. https://doi.org/10.1126/science.1063051
  20. McCabe, D., Swain, W. F., Martinell, B. J. and Christou, P. (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology 6, 923-926 https://doi.org/10.1038/nbt0888-923
  21. Meyer, P. (1995) Understanding and controlling transgene expression. Trends Biotechnol. 13, 332-337. https://doi.org/10.1016/S0167-7799(00)88977-5
  22. Meyer, P. (2000) Transcriptional transgene silencing and chromatin components. Plant Mol. Biol. 43, 221-234. https://doi.org/10.1023/A:1006483428789
  23. Morin, X., Daneman, R., Zavortink, M. and Chia, W. (2001) A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc. Natl. Acad. Sci. USA 98, 15050-15055. https://doi.org/10.1073/pnas.261408198
  24. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant 15, 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  25. Napoli, C., Lemieux, C. and Jorgensen, R. A. (1990) Introduction of a chimeric chalcone synthase gene in petunia results in reversible cosuppression of homologous genes in trans. Plant Cell 2, 279-289. https://doi.org/10.1105/tpc.2.4.279
  26. Richards, H. A., Halfhill, M. D., Millwood, R. J. and Stewart, C. N. (2003) Quantitative GFP fluorescence as an indicator of recombinant protein synthesis in transgenic plants. Plant Cell Rep. 22, 117-121. https://doi.org/10.1007/s00299-003-0638-1
  27. Sato, S., Newell, C., Kolacz, K., Tredo, L., Finer, J. and Hinchee, M. (1993) Stable transformation via particle bombardment in two different soybean regeneration systems. Plant Cell Rep. 12, 408-413.
  28. Spiker, S. and Thompson,W. F. (1996) Nuclear matrix attachment regions and transgene expression in plants. Plant Physiol. 110, 15-21. https://doi.org/10.1104/pp.110.1.15
  29. Stam, M., Mol, J. and Kooter, J. (1997) The silence of genes in transgenic plants. Ann. Bot. 79, 3-12. https://doi.org/10.1006/anbo.1996.0295
  30. Stewart, J. C. N. (2001) The utility of green fluorescent protein in transgenic plants. Plant Cell Rep. 20, 376-382. https://doi.org/10.1007/s002990100346
  31. Taylor, N. G. and Fauquet, C. M. (2002) Microparticle bombardment as a tool in plant science and agricultural biotechnology. DNA Cell Biol. 21, 963-977. https://doi.org/10.1089/104454902762053891
  32. Vance, V. and Vaucheret, H. (2001) RNA silencing in plants- Defense and counter defense. Science 292, 2277-2280. https://doi.org/10.1126/science.1061334
  33. Vaucheret, H., Beclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J-B., Mourrain, P., Palauqui, J.-C. and Vernhettes, S. (1998) Transgene-induced gene silencing in plants. Plant J. 16, 651-659. https://doi.org/10.1046/j.1365-313x.1998.00337.x
  34. Wang, M-B. and Waterhouse, P. (2002) Application of gene silencing in plants. Cur. Opin. Plant Biol. 5, 146-150. https://doi.org/10.1016/S1369-5266(02)00236-4
  35. Waterhouse, P. M., Wang, M. and Finnegan, E. J. (2001a) Role of short RNAs in gene silencing. Trends Plant Sci. 6, 297-301. https://doi.org/10.1016/S1360-1385(01)01989-6
  36. Waterhouse, P. M., Wang, M. B. and Lough, T. (2001b) Gene silencing as an adaptive defence against viruses. Nature 411, 834-842. https://doi.org/10.1038/35081168
  37. Wippersteg, V., Kapp, K., Kunz, W., Jackstadt, W. P., Zahner, H. and Grevelding, C. G. (2002) HSP70-controlled GFP expression in transiently transformed schistosomes. Mol. Biochem. Parasitol. 120, 141-150. https://doi.org/10.1016/S0166-6851(01)00446-7

Cited by

  1. Small RNAs were involved in homozygous state-associated silencing of a marker gene (Neomycin phosphotransferase II: nptII) in transgenic tomato plants vol.68, 2013, https://doi.org/10.1016/j.plaphy.2013.03.022
  2. Ubiquitous urease affects soybean susceptibility to fungi vol.79, pp.1-2, 2012, https://doi.org/10.1007/s11103-012-9894-1
  3. Antisense RNA approach targeting Rep gene ofMungbean yellow mosaic India virusto develop resistance in soybean vol.46, pp.18, 2013, https://doi.org/10.1080/03235408.2013.787751