DOI QR코드

DOI QR Code

Substitution of Serine for Non-disulphide-bond-forming Cysteine in Grass Carp (Ctenopharygodon Idellus) Growth Hormone Improves In Vitro Oxidative Renaturation

  • Received : 2005.10.12
  • Accepted : 2005.12.02
  • Published : 2006.03.31

Abstract

Native grass carp (Ctenopharygodon idellus) growth hormone, has 5 cysteine amino acid residues, forms two disulphide bridges in its mature form. Recombinant grass carp growth hormone, when over-expressed in E. coli, forms inclusion bodies. In vitro oxidative renaturation of guanidine-hydrochloride dissolved recombinant grass carp growth hormone was achieved by sequential dilution and stepwise dialysis at pH 8.5. The redox potential of the refolding cocktail was maintained by glutathione disulphide/glutathione couple. The oxidative refolded protein is heterogeneous, and contains multimers, oligomers and monomers. The presence of non-disulphide-bond-forming cysteine in recombinant grass carp growth hormone enhances intermolecular disulphide bond formation and also non-native intramolecular disulphide bond formation during protein folding. The non-disulphide-bond-forming cysteine was converted to serine by PCR-mediated site-directed mutagenesis. The resulting 4-cysteine grass carp growth hormone has improved in vitro oxidative refolding properties when studied by gel filtration and reverse phase chromatography. The refolded 4-cysteine form has less hydrophobic aggregate and has only one monomeric isoform. Both refolded 4-cysteine and 5-cystiene forms are active in radioreceptor binding assay.

Keywords

References

  1. Arosio, M., Nissim, M., Ballabio, M., Orefice, R., Bazzoni, N. and Faglia, G. (1991) Size heterogeneity of circulating growth hormone in acromegaly. “Big-big” GH forms are associated with inappropriately low IGF-I levels. Acta Endocrinol. (Copenh). 125, 150-159
  2. Baumann, G. (1999) Growth hormone heterogeneity in human pituitary and plasma. Horm Res. 51, 2-6
  3. Bhuyan, A. K. and Udgaonkar, J. B. (2001) Folding of Horse Cytochrome c in the Reduced State. J. Mol. Biol. 312, 1135-1160 https://doi.org/10.1006/jmbi.2001.4993
  4. Bulled, N. J. and Freedman, R. B. (1988) Defective cotranslational formation of disulphide bonds in protein disulphide-isomerase-deficient microsomes. Nature 335, 649-651 https://doi.org/10.1038/335649a0
  5. Chang, Y. S., Liu, C. S., Huang, F. L. and Lo, T. B. (1992) The primary structures of growth hormones of three cyprinid species: bighead carp, silver carp, and grass carp. Gen Comp Endocrinol. 87, 385-393 https://doi.org/10.1016/0016-6480(92)90045-L
  6. Creighton, T. E., Hillson, D. A. and Freedman, R. B. (1980) Catalysis by protein-disulphide isomerase of the unfolding and refolding of proteins with disulphide bonds. J. Mol. Biol. 142, 43-62 https://doi.org/10.1016/0022-2836(80)90205-3
  7. De Bernande, C. E., Schwarz E. and Rudolph, R. (1999) Inhibition of aggregation side reactions during in vitro protein folding. Methods Enzymol. 309, 217-236 https://doi.org/10.1016/S0076-6879(99)09017-5
  8. De Palo, E. F., De Filippis, V., Gatti, R. and Spinella, P. (2005) Growth hormone isoforms and segments/fragments: Molecular structure and laboratory measurement. Clin. Chim. Acta 26, Epub ahead of print
  9. Dolgikh, D. A., Abaturov, L. V., Bolotina, I. A., Brazhnikov, E. V., Bychkova, V. E., Gilmanshin, R. I., Lebedev, Y. O., Semisotnov, G. V., Tiktopulo, E. I. and Ptitsyn, O. B. (1985) Compact state of a protein molecule with pronounced smallscale mobility: bovine alpha-lactalbumin. Eur. Biophys. J. 13, 109-121
  10. Dolgikh, D. A., Gilmanshin, R. I., Brazhnikov, E. V., Bychkova, V. E., Semisotnov, G. V., Venyaminov, S. Y. and Ptitsyn, O. B. (1981) Alpha-Lactalbumin: compact state with fluctuating tertiary structure? FEBS Lett. 136, 311-315 https://doi.org/10.1016/0014-5793(81)80642-4
  11. Dolgikh, D. A., Kolomiets, A. P., Bolotina, I. A. and Ptitsyn, O. B. (1984) 'Molten-globule' state accumulates in carbonic anhydrase folding. FEBS Lett. 165, 88-92 https://doi.org/10.1016/0014-5793(84)80020-4
  12. Eaton, W. A., Muñoz, V., Thompson, P. A., Chan, C. K. and Hofrichter, J. (1997) Submillisecond kinetics of protein folding. Curr. Opinion Struct. Biol. 7, 10-14 https://doi.org/10.1016/S0959-440X(97)80003-6
  13. Frand, A. R. and Kaiser, C. A. (1998) The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum. Mol. Cell. 1, 161-170 https://doi.org/10.1016/S1097-2765(00)80017-9
  14. Frand, A. R., Cuozzo, J. and Kaiser, C. A. (2000) Pathways for proteins disulphide bond formation in the endoplasmic reticulum. Trends Cell Biol. 5, 203-210
  15. Futami, J., Tsushima, Y., Tada, H., Seno, M. and Yamada, H. (2000) Convenient and efficient in vitro folding of disulphidecontaining globular protein from crude bacterial inclusion bodies. J. Biochem. (Tokyo) 127, 435-441 https://doi.org/10.1093/oxfordjournals.jbchem.a022625
  16. Gorovits, B. M. and Horowitz, P. M. (1998) High hydrostatic pressure can reverse aggregation of protein folding intermediates and facilitate acquisition of native structure. Biochemistry 37, 6132-6135 https://doi.org/10.1021/bi9730137
  17. Hartl, F. U. (1996) Molecular chaperones in cellular protein folding. Nature 381, 571-580 https://doi.org/10.1038/381571a0
  18. Hartley, D. L. and Kane, J. F. (1988) Properties of inclusion bodies from recombinant Escherichia coli. Biochem. Soc. Trans. 16, 101-102 https://doi.org/10.1042/bst0160101
  19. Ho, W. K., Tsang, W. H. and Dias, N. P. (1989) Cloning of the grass carp growth hormone cDNA. Biochem. Biophys. Res. Commun. 161, 1239-43 https://doi.org/10.1016/0006-291X(89)91375-2
  20. Huth, J. R., Norton, S. E., Lockridge, O., Shikone, T., Hsueh, A. J. and Ruddon, R. W. (1994) Bacterial expression and in vitro folding of the beta-subunit of human chorionic gonadotropin (hCG beta) and functional assembly of recombinant hCG beta with hCG alpha. Endocrinology 135, 911-918 https://doi.org/10.1210/en.135.3.911
  21. Jakob, U. and Buchner, J. (1994) Assisting spontaneity: the role of Hsp90 and small Hsps as molecular chaperones. Trends Biochem. Sci. 19, 205-211 https://doi.org/10.1016/0968-0004(94)90023-X
  22. Jonda, S., Huber-Wunderlich, M., Glockshuber, R. and Mössner, E. (1999), Complementation of DsbA deficiency with secreted thioredoxin variants reveals the crucial role of an efficient dithiol oxidant for catalyzed protein folding in the bacterial periplasm. EMBO J. 18, 3271-3281 https://doi.org/10.1093/emboj/18.12.3271
  23. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0
  24. Li, M., Su, Z. G. and Janson, J. C. (2004) In vitro protein refolding by chromatographic procedures. Protein Expr. Purif. 33, 1-10 https://doi.org/10.1016/j.pep.2003.08.023
  25. Lilie, H., Schwarz, E. and Rudolph, R. (1998) Advances in refolding of proteins produced in E. coli. Curr. Opin. Biotechnol. 9, 497-501 https://doi.org/10.1016/S0958-1669(98)80035-9
  26. Misawa, S. and Kumagai, I. (1999) Refolding of therapeutic proteins produced in Escherichia coli as inclusion bodies. Biopolymers (Peptide Science) 51, 297-307 https://doi.org/10.1002/(SICI)1097-0282(1999)51:4<297::AID-BIP5>3.0.CO;2-I
  27. Nath, D. and Rao, M. (2001) Artificial chaperone mediated refolding of xylanase from an alkalophilic thermophilic Bacillus sp. Implications for in vitro protein renaturation via a folding intermediate. Eur. J. Biochem. 268, 5471-5478 https://doi.org/10.1046/j.0014-2956.2001.02485.x
  28. Ohgushi, M. and Wada, A. (1983) 'Molten-globule state': a compact form of globular proteins with mobile side-chains. FEBS Lett. 164, 21-24 https://doi.org/10.1016/0014-5793(83)80010-6
  29. Pearce, K. H. Jr., Cunningham, B. C., Fuh, G., Teeri, T. and Wells, J. A. (1999) Growth hormone binding affinity for its receptor surpasses the requirements for cellular activity. Biochemistry 38, 81-89 https://doi.org/10.1021/bi9817008
  30. Puri, N. K., Crivelli, E., Cardamone, M., Fiddes, R., Bertolini, J., Ninham, B. and Brandon, M. R. (1992) Solubilization of growth hormone and other recombinant proteins from Escherichia coli inclusion bodies by using a cationic surfactant. Biochem. J. 285, 871-879 https://doi.org/10.1042/bj2850871
  31. Rudolph, R. and Lilie, H. (1996) In vitro folding of inclusion body proteins. FASEB J. 10, 49-56 https://doi.org/10.1096/fasebj.10.1.8566547
  32. Shiu, R. P. C. and Friesen, H. G. (1974) Properties of a prolactin receptor from the rabbit mammary gland. Biochem. J. 140, 301-311 https://doi.org/10.1042/bj1400301
  33. Sosnick, T. R., Mayne, L. and Englander, S. W. (1996) Molecular collapse: the rate-limiting step in two-state cytochrome c folding. Proteins 24, 413-426 https://doi.org/10.1002/(SICI)1097-0134(199604)24:4<413::AID-PROT1>3.0.CO;2-F
  34. Tayyab, S., Ahmad, B., Kumar, Y. and Khan, M. M. (2002) Saltinduced refolding in different domains of partially folded bovine serum albumin. Int. J. Biol. Macromol. 30, 17-22 https://doi.org/10.1016/S0141-8130(01)00185-4
  35. Thorell, J. I. and Johansson, B. G. (1971) Enzymatic iodination of polypeptides with $^{125}I$ to high specific activity. Biochem. Biophys. Acta 251, 363-369
  36. Towbin, H., Stachelin, T. and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. 76, 4350-4354 https://doi.org/10.1073/pnas.76.9.4350
  37. Tsushima, T. and, Friesen, H. G. (1973) Radioreceptor assay for growth hormone. J. Clin. Endocrinol. Metab. 37, 334-337 https://doi.org/10.1210/jcem-37-2-334
  38. Weissman, J. S. and Kim, P. S. (1993) Efficient catalysis of disulphide bond rearrangements by protein disulphide isomerase. Nature 365, 185-188 https://doi.org/10.1038/365185a0
  39. West, S. M., Chaudhuri, J. B. and Howell, J. A. (1998) Improved protein refolding using hollow-fibre membrane dialysis. Biotechnol. Bioeng. 57, 590-599 https://doi.org/10.1002/(SICI)1097-0290(19980305)57:5<590::AID-BIT11>3.0.CO;2-G
  40. Williams, D. C., Van Frank, R. M., Muth, W. L. and Burnett, J. P. (1982) Cytoplasmic inclusion bodies in Escherichia coli producing biosynthetic human insulin proteins. Science 215, 687-689 https://doi.org/10.1126/science.7036343
  41. Yin, G. and Swartz, J. R. (2004) Enhancing multiple disulphide bonded protein folding in a cell-free system. Biotechnol. Bioeng. 86, 188-195 https://doi.org/10.1002/bit.10827

Cited by

  1. Recombinant expression and affinity purification of a novel epididymal human sperm-binding protein, BSPH1 vol.15, pp.2, 2008, https://doi.org/10.1093/molehr/gan077
  2. Role of cysteine at positions 67, 161 and 241 of a Bacillus sphaericus binary toxin BinB vol.43, pp.1, 2010, https://doi.org/10.5483/BMBRep.2010.43.1.023