DOI QR코드

DOI QR Code

Preliminary Proteomic Analysis of Indomethacin's Effect on Tumor Transplanted with Colorectal Cancer Cell in Nude Mice

  • Wang, Yu-Jie (Department of Gastroenterology, Xiangya Hospital of Central South University) ;
  • Zhang, Gui-Ying (Department of Gastroenterology, Xiangya Hospital of Central South University) ;
  • Xiao, Zhi-Qiang (Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University) ;
  • Wang, Hong-Mei (Department of Gastroenterology, Xiangya Hospital of Central South University) ;
  • Chen, Zhu-Chu (Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University)
  • Received : 2005.11.10
  • Accepted : 2005.12.12
  • Published : 2006.03.31

Abstract

Nonsteroidal anti-inflammatory drugs such as indomethacin (IN) can exert anti-colorectal cancer (CRC) activity through cyclooxygenase independent mechanism, but the exactly biological mechanism is not completely known. Here we use proteomic tools to investigate the molecular mechanism of this action. First, nude mice bearing tumors derived from subcutaneous injection with human CRC cell line HCT116 were randomly allocated to groups treated with or without indomethacin. Later, tumor lumps were incised and then total proteins extracted. After separated with two-dimensional electrophoresis, thirty-one differently expressed spots were found between IN-treated and non-IN-treated groups, of which 25 spots decreased and 6 spots increased in abundance in IN-treated group. Through matrix-assisted laser desorption ionization time of flight mass spectrometry and then NCBInr and SWISS-PROT databases searching, 12 protein spots were finally identified including galectin-1, annexin A1, annexin IV, trancription factor BTF3A, calreticulin. Most of the identified proteins are correlated with tumor's biological prosperities of proliferation, invasion, apoptosis and immunity, or take part in cell's signal transduction. From above we thought that indomethacin can exert its effect on colorectal cancer through regulating several proteins' expression directly or indirectly. Further study of these proteins may be helpful in founding new targets of drugs for cancer chemotherapy.

Keywords

References

  1. Al-Saleem, T., Sabri, A. Z. and Qassab, M. (1980) Skin cancers in xeroderma pigmentosum: response to indomethacin and steroids. Lancet 2, 264-265
  2. Barondes, S. H., Castronovo, V., Cooper, D. N., Cummings, R. D., Drickamer, K., Feizi, T., Gitt, M. A., Hirabayashi, J., Hughes, C. and Kasai, K. (1994a) Galectins: A family of animal beta-galactoside-binding lectins. Cell 76, 597-598 https://doi.org/10.1016/0092-8674(94)90498-7
  3. Barondes, S. H., Cooper, D. N. W., Gitt, M. A. and Leffler, H. (1994b) Galectins: Structure and function of a large family of animal lectins. J. Biol. Chem. 269, 20807-20810
  4. Brockstedt, E., Otto, A., Rickers, A., Bommert, K. and Wittmann- Liebold, B. (1999) Preparative high-resolution two-dimensional electrophoresis enables the identification of RNA polymerase B transcription factor 3 as an apoptosis-associated protein in the human BL60-2 Burkitt lymphoma cell line. J. Protein Chem. 18, 225-231 https://doi.org/10.1023/A:1020636308270
  5. Candiano, G., Bruschi, M., Musante, L., Santucci, L., Ghiggeri, G. M., Carnemolla, B., Orecchia, P., Zardi, L. and Righetti, P. G. (2004) Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25, 1327-1333 https://doi.org/10.1002/elps.200305844
  6. Coussens, L. M. and Werb, Z. (2002) Inflammation and cancer. Nature 420, 19-26. https://doi.org/10.1038/420019a
  7. Eberhart, C. E., Coffey, R. J., Radhika, A., Giardiello, F. M., Ferrenbach, S. and DuBois, R. N. (1994) Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 107, 1183-1188 https://doi.org/10.1016/0016-5085(94)90246-1
  8. Garcia-Rodrigez, L. A. and Huerta-Alvarez, C. (2000) Reduced incidence of colorectal adenoma among long-term users of nonsteroidal anti-inflammatory drugs: A pooled analysis of published studies and a new population-based study. Epidemiology 11, 376-381 https://doi.org/10.1097/00001648-200007000-00003
  9. Hanif, R., Pittas, A., Feng, Y., Koutsos, M. I., Qiao, L., Staiano- Coico, L., Shiff, S. I. and Rigas B. (1996) Effects of nonsteroidal anti-inflammatory drugs on proliferation and on induction of apoptosis in colon cancer cells by a prostaglandinindependent pathway. Biochem. Pharmacol. 52, 237-245 https://doi.org/10.1016/0006-2952(96)00181-5
  10. He, T. C., Chan, T. A., Vogelstein, B. and Kinzler, K. W. (1999) PPAR delta is an APC-regulated target of nonsteroidal antiinflammatory drugs. Cell 99, 335-345 https://doi.org/10.1016/S0092-8674(00)81664-5
  11. Hida, T., Leyton, J., Makheja, A. N., Ben-Av, P., Hla, T., Martinez, A., Mulshine, J., Malkani, S., Chung, P. and Moody, T. W. (1998) Non-small cell lung cancer cycloxygenase activity and proliferation are inhibited by non-steroidal antiinflammatory drugs. Anticancer Res. 18, 775-782
  12. Kinzler, A. K. and Vogelstein, B. (1998) Colorectal tumors; in: The genetic basis of human cancer, Vogelstein, B. and Kinzler, K. W. (eds.), pp. 565-587. McGraw-Hill, New York, USA
  13. Kundu, N., Smyth, M. J., Samsel, L. and Fulton, A. M. (2002) Cyclooxygenase inhibitors block cell growth, increase ceramide and inhibit cell cycle. Breast Cancer Res. Treat. 76, 57-64 https://doi.org/10.1023/A:1020224503335
  14. Lahm, H., Andre, S., Hoeflich, A., Fischer, J. R., Sordat, B., Kaltner, H., Wolf, E. and Gabius, H. J. (2001) Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures. J. Cancer Res. Clin. Oncol. 127, 375-386 https://doi.org/10.1007/s004320000207
  15. Liu, F. T., Patterson, R. J. and Wang, J. L. (2002) Intracellular functions of galectins. Biochim. Biophys. Acta. 1572, 263-273 https://doi.org/10.1016/S0304-4165(02)00313-6
  16. Lundholm, K., Gelin, J., Hyltander, A., Lonnroth, C., Sandstrom, R., Svaninger, G., Korner, U., Gulich, M., Karrefors, I. and Norli, B. (1994) Anti-inflammatory treatment may prolong survival in undernourished patients with metastatic solid tumors. Cancer Res. 54, 5602-5606
  17. Panje, W. R. (1981) Regression of head and neck carcinoma with a prostaglandin-synthesis inhibitor. Arch. Otolaryngol. 107, 658-663 https://doi.org/10.1001/archotol.1981.00790470006003
  18. Pelzmann, M., Thurnher, D., Gedlicka, C., Martinek, H. and Knerer, B. (2004) Nimesulide and indomethacin induce apoptosis in head and neck cancer cells. J. Oral Pathol. Med. 33, 607-613 https://doi.org/10.1111/j.1600-0714.2004.00216.x
  19. Perillo, N. L., Marcus, M. E. and Baum, L. G. (1998) Galectins: Versatile modulators of cell adhesion, cell proliferation, and cell death. J. Mol. Med. 76, 402-412 https://doi.org/10.1007/s001090050232
  20. Perillo, N. L., Pace, K. E., Seilhamer, J. J. and Baum, L. G. (1995) Apoptosis of T cells mediated by galectin-1. Nature 378, 736-739 https://doi.org/10.1038/378736a0
  21. Rabinovich, G. A., Baum, L. G., Tinari, N., Paganelli, R., Natoli, C., Liu, F. T. and Iacobelli, S. (2002) Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response? Trends Immunol. 23, 313-320 https://doi.org/10.1016/S1471-4906(02)02232-9
  22. Rubinstein, N., Alvarez, M. and Zwirner, N. W. (2004) Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection: A potential mechanism of tumor-immune privilege. Cancer Cell. 5, 241-251 https://doi.org/10.1016/S1535-6108(04)00024-8
  23. Sanjuan, X., Fernandez, P. L., Castells, A., Castronovo, V., van den Brule, F., Liu, F. T., Cardesa, A. and Campo, E. (1997) Differential expression of galectin 3 and galectin 1 in colorectal cancer progression. Gastroenterology 113, 1906-1915 https://doi.org/10.1016/S0016-5085(97)70010-6
  24. Sawaoka, H., Kawano, S., Tsuji, S., Tsujii, M., Murata, H. and Hori, M. (1998) Effects of NSAIDs on proliferation of gastric cancer cells in vitro: Possible implication of cyclooxygenase-2 in cancer development. J. Clin. Gastroenterology 27, 47-52 https://doi.org/10.1097/00004836-199807000-00009
  25. Smith, M. L., Hawcroft, G., Hull and M. A. (2000) Effect of nonsteroidal anti-inflammatory drugs on human colorectal cancer cells: Evidence of differant mechanisms of action. Eur. J. Cancer 36, 664-674 https://doi.org/10.1016/S0959-8049(99)00333-0
  26. Sonnenberg, A. and Fennerty, M. B. (2003) Medical decision analysis of chemoprevention against esophageal adenocarcinoma. Gastroenterology 124, 1758-1766 https://doi.org/10.1016/S0016-5085(03)00393-7
  27. Stevenson, M. A., Zhao, M. J., Asea, A., Coleman, C. N. and Calderwood, S. K. (1999) Salicylic acid and aspirin inhibit the activity of RSK2 kinase and repress RSK2-depedent transcription of cyclic AMP response element binding protein and NF-$_{\kappa}B$ responsive genes. J. Immunol. 163, 5608-5616
  28. Waddell, W. R. and Gerner, R. E. (1980) Indomethacin and ascorbate inhibit desmoid tumors. J. Surg. Oncol. 15, 85-90 https://doi.org/10.1002/jso.2930150113
  29. Wang, H. M. and Zhang, G. Y. (2005) Indomethacin suppresses growth of colon cancer via inhibition of angiogenesis in vivo. World J. Gastroenterol. 11, 340-343 https://doi.org/10.3748/wjg.v11.i3.340
  30. Williams, C. S., Watson, A. J., Sheng, H., Helou, R., Shao, J. and DuBois, R. N. (2000) Celecoxib prevents tumor growth in vivo without toxicity to normal gut: Lack of correlation between in vitro and in vivo models. Cancer Res. 60, 6045-6051
  31. Yang, R. Y. and Liu, F. T. (2003) Galectins in cell growth and apoptosis. Cell Mol. Life Sci. 60, 267-276 https://doi.org/10.1007/s000180300022
  32. Zhang, X., Morham, S. G., Langenbach, R. and Young, D. A. (1999) Malignant transformation and anti-neoplastic action of nonsteroidal anti-inflammatory drugs (NSAIDs) on cyclooxygenasenull embryo fibroblasts. J. Exp. Med. 190, 451-459 https://doi.org/10.1084/jem.190.4.451

Cited by

  1. Potential role of Anxa1 in cancer vol.9, pp.11, 2013, https://doi.org/10.2217/fon.13.114
  2. Nonsteroidal Anti-inflammatory—Organometallic Anticancer Compounds vol.55, pp.4, 2016, https://doi.org/10.1021/acs.inorgchem.5b02690
  3. Contribution of galectin-1, a glycan-binding protein, to gastrointestinal tumor progression vol.23, pp.29, 2017, https://doi.org/10.3748/wjg.v23.i29.5266
  4. Keratin 17 identified by proteomic analysis may be involved in tumor angiogenesis vol.42, pp.6, 2009, https://doi.org/10.5483/BMBRep.2009.42.6.344
  5. Annexin A1: Uncovering the Many Talents of an Old Protein vol.19, pp.4, 2018, https://doi.org/10.3390/ijms19041045