DOI QR코드

DOI QR Code

Structure Analysis of 16S rDNA Sequences from Strains of Acidithiobacillus ferrooxidans

  • Peng, Hong (School of Minerals Processing and Bioengineering, Central South University) ;
  • Yang, Yu (School of Minerals Processing and Bioengineering, Central South University) ;
  • Li, Xuan (School of Minerals Processing and Bioengineering, Central South University) ;
  • Qiu, Guanzhou (School of Minerals Processing and Bioengineering, Central South University) ;
  • Liu, Xueduan (School of Minerals Processing and Bioengineering, Central South University) ;
  • Huang, Jufang (School of Minerals Processing and Bioengineering, Central South University) ;
  • Hu, Yuehua (School of Minerals Processing and Bioengineering, Central South University)
  • Received : 2005.10.03
  • Accepted : 2005.12.20
  • Published : 2006.03.31

Abstract

Four strains of Acidithiobacillus ferrooxidans with different iron oxidation capacity were isolated from different mine drainage stations. The 16S rRNA gene of these strains were cloned and sequenced. Based on our sequences analysis on the four strain and the data on the other strains deposited in Genbank, all A. ferrooxidans may be classified into three phylogenetic groups. The analysis data showed that nucleotide variables (signature sites) were detected in 21 positions, and most of them were found in the first 800bp from 5' terminal except position 970 and 1375. Interestingly, the first 13 signature sites were located in two main regions:the first region (position 175-234) located in V2 while the second region (position 390-439) were detected in constant region between V2 and V3. Furthermore, the secondary structure and minimal free energy were determined in two regions among strains of three groups. These results may be useful in characterizing the microevolutionary mechanisms of species formation and monitoring in biohydrometallurgical application.

Keywords

References

  1. Ageeva, S. N., Kondrat'eva, T. F. and Karavaiko, G. I. (2001) Phenotypic characteristics of Thiobacillus ferrooxidans strains. Microbiology 70, 186-194 https://doi.org/10.1023/A:1010429530102
  2. Bertil, P., Goran, B., Francois, T., Mathias, U. and Karlerik, J. (1998) Molecular evolution of mycoplasma capricolum subsp. capripneumoniae strains, based on polymorphisms in the 16S rRNA genes. J. Bateriol. 180, 2350-2358
  3. Edwards, U., Rogall, T., Blocker, H., Emde, M. and Bottger, E. C. (1989) Isolation and direct complete nucleotide determination of entire genes. Nucleic Acids Res. 17, 7843-7853 https://doi.org/10.1093/nar/17.19.7843
  4. Grigorii, I., Karavaiko, T. P., Turova, T. F., Kondrateva, A. M., Lysenko, T. V., Kolganova, S. N., Ageeva, L. N., Muntyan, T. and Pivovarova, A. (2003) Hylogenetic heterogeneity of the species Acidithiobacillus ferrooxidans. J. Syst. Evol. Microbiol. 53, 113-119 https://doi.org/10.1099/ijs.0.02319-0
  5. Gray, M. W., Sankoff, D. and Cedergren, R. J. (1984) On the evolutionary descent of organisms and organelles: a global phylogeny based on a highly conserved structutral core in small subunit ribosomal RNA. Nucleic Acids Res. 12, 5837- 5852 https://doi.org/10.1093/nar/12.14.5837
  6. http://www.tigr.org
  7. Harrison, A. P. (1982) Genomic and physiological diversity amongst strains of Thiobacillus ferrooxidans and genomic comparison with Thiobacillus thiooxidans. Arch. Microbiol. 131, 68-76 https://doi.org/10.1007/BF00451501
  8. He, Z. G., Hu, Y. H., Hu, W. X., Zhong, H., Xu, J. and Zhu, M. (2004) Studies of polymorphisms of thiobacillus ferrooxidans using RAPD. Hereditas (Beijing) 26, 69-74
  9. Johnson, D. B., Rolfe, S., Hallberg, K. B. and Iversen, E. (2001) Isolation and phylogenetic characterization of acidophilic microorganisms indigenous to acidic drainage waters at an abandoned Norwegian copper mine. Environ. Microbiol. 3, 630-637 https://doi.org/10.1046/j.1462-2920.2001.00234.x
  10. Kelly, D. P. and Wood, A. P. (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int. J. Syst. Evol. Microbiol. 50, 489-500 https://doi.org/10.1099/00207713-50-2-489
  11. Kamimura, K., Wakai, S. and Sugio, T. (2001) Identification of Thiobacillus ferrooxidans strains based on restriction fragment length polymorphism analysis of 16S rDNA. Microbioscience 105, 141-152
  12. Mathews, D. H., Sabina, J., Zuker, M. and Turner, D. H. (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911-940 https://doi.org/10.1006/jmbi.1999.2700
  13. Paulino, L. C., Bergamo, R. F., de Mello, M. P., Garcia, O., Manfio, G. P. and Ottoboni, L. M. M. (2001) Molecular characterization of Acidithiobacillus ferrooxidans and A.thiooxidans strains isolated from mine wastes in Brazil. Antonie Van Leeuwenhoek 80, 65-75 https://doi.org/10.1023/A:1012247325537
  14. Rohwerder, T., Gehrke, T., Kinzler, K. and Sand, W. (2003) Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol. 63, 239-248 https://doi.org/10.1007/s00253-003-1448-7
  15. Rawlings, D. E. (2002) Heavy metal mining using microbes. Annu. Rev. Microbiol. 56, 65-91 https://doi.org/10.1146/annurev.micro.56.012302.161052
  16. Yang, S., Xie, J., Qiu, G. and Hu, Y. (2002) Research and application of bioleaching and biooxidation technologies in China. Miner. Engineering 15, 361-363 https://doi.org/10.1016/S0892-6875(02)00019-5
  17. Rawlings, D. E. (2001) The molecular genetics of Thiobacillus ferrooxidans and other mesophilic, acidophilic, chemolithotrophic, iron- or sulfur-oxidizing bacteria. Hydrometallurgy 59, 187-201 https://doi.org/10.1016/S0304-386X(00)00182-1
  18. Silverman, M. P. and Lundgren, D. C. S. (1959) Study on the chemoautotrophic iron bacterium ferrobacillus ferrooxidans: I. an improved medium and harvesting procedure for securing high cell yield, J. Bacteriol. 77, 642-647 https://doi.org/10.1002/path.1700770237
  19. Temple, K. L. and Colmer, A. R. (1951) The autotrophic oxidation of iron by a new bacterium Thiobacillus ferrooxidans. J. Bacteriol. 61, 605-611
  20. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876-4882
  21. Yang, Y., Peng, H., Sun, B., Wang, J.-W. and Hu, Y.-H. (2005) Molecular diversity of the gene encoding Fe(II)-oxidizing enzyme in acidithiobacillus ferrooxidans. Hereditas (Beijing) 27, 787-791

Cited by

  1. Antagonistic properties of seagrass associated Streptomyces sp. RAUACT-1: A source for anthraquinone rich compound vol.5, pp.11, 2012, https://doi.org/10.1016/S1995-7645(12)60165-5
  2. Characterization of arsenic resistant and arsenopyrite oxidizing Acidithiobacillus ferrooxidans from Hutti gold leachate and effluents vol.99, pp.16, 2008, https://doi.org/10.1016/j.biortech.2008.02.019
  3. Anticancer property of sediment actinomycetes against MCF–7 and MDA–MB–231 cell lines vol.2, pp.2, 2012, https://doi.org/10.1016/S2221-1691(11)60199-8
  4. Acidithiobacillus ferridurans sp. nov., an acidophilic iron-, sulfur- and hydrogen-metabolizing chemolithotrophic gammaproteobacterium vol.63, pp.Pt 11, 2013, https://doi.org/10.1099/ijs.0.049759-0
  5. Phylogenetic and genetic variation among Fe(II)-oxidizing acidithiobacilli supports the view that these comprise multiple species with different ferrous iron oxidation pathways vol.157, pp.1, 2011, https://doi.org/10.1099/mic.0.044537-0
  6. Isolation and identification of a strain ofLeptospirillum ferriphilum from an extreme acid mine drainage site vol.57, pp.2, 2007, https://doi.org/10.1007/BF03175203
  7. Effect of sodium chloride on sulfur speciation of chalcopyrite bioleached by the extreme thermophile Acidianus manzaensis vol.110, 2012, https://doi.org/10.1016/j.biortech.2012.01.084
  8. Isolation, identification and arsenic-resistance of Acidithiobacillus ferrooxidans HX3 producing schwertmannite vol.26, pp.7, 2014, https://doi.org/10.1016/j.jes.2014.05.012
  9. Isolation and characterization of Acidithiobacillus ferrooxidans strain QXS-1 capable of unusual ferrous iron and sulfur utilization vol.136, 2013, https://doi.org/10.1016/j.hydromet.2013.03.005
  10. An effective method of DNA extraction for bioleaching bacteria from acid mine drainage vol.79, pp.5, 2008, https://doi.org/10.1007/s00253-008-1491-5
  11. The effect of the introduction of exogenous strain Acidithiobacillus thiooxidans A01 on functional gene expression, structure and function of indigenous consortium during pyrite bioleaching vol.102, pp.17, 2011, https://doi.org/10.1016/j.biortech.2011.06.012
  12. The co-culture of Acidithiobacillus ferrooxidans and Acidiphilium acidophilum enhances the growth, iron oxidation, and CO2 fixation vol.193, pp.12, 2011, https://doi.org/10.1007/s00203-011-0723-8
  13. Multi Locus Sequence Typing scheme for Acidithiobacillus caldus strain evaluation and differentiation vol.165, pp.9, 2014, https://doi.org/10.1016/j.resmic.2014.07.014
  14. Stochastic simulation of growth curves of Acidithiobacillus ferrooxidans vol.13, pp.5, 2006, https://doi.org/10.1007/s11771-006-0070-0