DOI QR코드

DOI QR Code

Confirming Single Nucleotide Polymorphisms from Expressed Sequence Tag Datasets Derived from Three Cattle cDNA Libraries

  • Lee, Seung-Hwan (Animal Genomics & Bioinformatics Division, National Livestock Research Institute, RDA) ;
  • Park, Eung-Woo (Animal Genomics & Bioinformatics Division, National Livestock Research Institute, RDA) ;
  • Cho, Yong-Min (Animal Genomics & Bioinformatics Division, National Livestock Research Institute, RDA) ;
  • Lee, Ji-Woong (Animal Genomics & Bioinformatics Division, National Livestock Research Institute, RDA) ;
  • Kim, Hyoung-Yong (Animal Genomics & Bioinformatics Division, National Livestock Research Institute, RDA) ;
  • Lee, Jun-Heon (Division of Animal Science and Resources, Research Center for Transgenic Cloned Pigs, Chungnam National University) ;
  • Oh, Sung-Jong (Animal Genomics & Bioinformatics Division, National Livestock Research Institute, RDA) ;
  • Cheong, Il-Cheong (Animal Genomics & Bioinformatics Division, National Livestock Research Institute, RDA) ;
  • Yoon, Du-Hak (Animal Genomics & Bioinformatics Division, National Livestock Research Institute, RDA)
  • Received : 2005.10.25
  • Accepted : 2005.12.21
  • Published : 2006.03.31

Abstract

Using the Phred/Phrap/Polyphred/Consed pipeline established in the National Livestock Research Institute of Korea, we predicted candidate coding single nucleotide polymorphisms (cSNPs) from 7,600 expressed sequence tags (ESTs) derived from three cDNA libraries (liver, M. longissimus dorsi, and intermuscular fat) of Hanwoo (Korean native cattle) steers. From the 7,600 ESTs, 829 contigs comprising more than two EST reads were assembled using the Phrap assembler. Based on the contig analysis, 201 candidate cSNPs were identified in 129 contigs, in which transitions (69%) outnumbered transversions (31%). To verify whether the predicted cSNPs are real, 17 SNPs involved in lipid and energy metabolism were selected from the ESTs. Twelve of these were confirmed to be real while five were identified as artifacts, possibly due to expressed sequence tag sequence error. Further analysis of the 12 verified cSNPs was performed using the program BLASTX. Five were identified as nonsynonymous cSNPs, five were synonymous cSNPs, and two SNPs were located in 3'-UTRs. Our data indicated that a relatively high SNP prediction rate (71%) from a large EST database could produce abundant cSNPs rapidly, which can be used as valuable genetic markers in cattle.

Keywords

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Berger, J., Suzuki, T., Senti, K. A., Stubbs, J., Schaffner, G. and Dickson, B. J. (2001) Genetic mapping with SNP markers in Drosophila. Nat. Genet. 29, 475-481 https://doi.org/10.1038/ng773
  3. Buetow, K. H., Edmonson, M. N. and Cassidy, A. B. (1999) Reliable identification of large numbers of candidate SNPs from public EST data. Nat. Genet. 21, 323-325 https://doi.org/10.1038/6851
  4. Cargill, M., Altshuler, D., Ireland, J., Sklar, P., Ardlie, K., Patil, N., Shaw, N., Lane, C. R., Lim, E. P., Kalyanaraman, N., Nemesh, J., Ziaugra, L., Friedland, L., Rolfe, A., Warrington, J., Lipshutz, R., Daley, G. Q. and Lander, E. S. (1999) Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat. Genet. 22, 231-238 https://doi.org/10.1038/10290
  5. Cheng, T. C., Xia, O. Y., Qian, J. F., Liu, C., Lin, Y., Zha, X. F. and Xiang, Z. H. (2004) Mining single nucleotide polymorphisms from EST data of silkworm, Bombyx mori, inbred strain Dazao. Insect Biochem. Mol. Biol. 34. 523-530 https://doi.org/10.1016/j.ibmb.2004.02.004
  6. Dawson, E. (1999) SNP maps: More markers needed? Mol. Med. Today 5, 419-420 https://doi.org/10.1016/S1357-4310(99)01564-6
  7. Elahe, E., Jochen, K. and Mostafa, R. (2004) Global genetic analysis. J. Biochem. Mol. Biol. 37, 11-27 https://doi.org/10.5483/BMBRep.2004.37.1.011
  8. Ewing, B. and Green, P. (1998) Base-calling of automated sequencer traces using phred. II. error probabilities. Genome Res. 8, 186-194 https://doi.org/10.1101/gr.8.3.186
  9. Fahrenkrug, S. C., Freking, B. A., Smith, T. P. L., Rohrer, G. A. and Keele, J. W (2002) Single nucleotide polymorphism (SNP) discovery in porcine expressed genes. Anim. Genet. 33, 186-195 https://doi.org/10.1046/j.1365-2052.2002.00846.x
  10. Gordon, D., Abajian, C. and Green, P. (1998) Consed: a graphical tool for sequence finishing. Genome Res. 8, 195-202 https://doi.org/10.1101/gr.8.3.195
  11. Gu, Z., Hillier, L. D. and Kwok, P-Y (1998) Single nucleotide polymorphism hunting in cyberspace. Human Mutat. 12, 221-225 https://doi.org/10.1002/(SICI)1098-1004(1998)12:4<221::AID-HUMU1>3.0.CO;2-I
  12. Hawken, R. J., Barris, W. C., McWilliam, S. M. and Dalrymple, B. P. (2004) An interactive bovine in silico SNP database (IBISS). Mamm. Genome. 15, 819-827 https://doi.org/10.1007/s00335-004-2382-4
  13. Irizarry, K., Kustanovich, V., Li, C., Brown, N. and Nelson, S. (2000) Genome-wide analysis of single nucleotide polymorphisms in human expressed sequences. Nat. Genet. 26, 233-236 https://doi.org/10.1038/79981
  14. Kim, H., Schmidt, C. J., Decker, K. S. and Emara, M. G. (2003) A double-screening method to identify reliable candidate nonsynonymous SNPs from chicken EST data. Anim. Genet. 34, 249-254 https://doi.org/10.1046/j.1365-2052.2003.01003.x
  15. Kruglyak, L. (1997) The use of a genetic map of biallelic markers in linkage studies. Nat. Genet. 17, 21-24 https://doi.org/10.1038/ng0997-21
  16. Marth, G. T., Korf, I., Yandell, M. D., Yeh, R. T., Gu, Z., Zakeri, H., Stitziel, N. O., Hillier, L., Kwok, P. Y. and Gish, W. R. (1999) A general approach to single-nucleotide polymorphism discovery. Nat. Genet. 23, 452-456 https://doi.org/10.1038/70570
  17. Nickerson, D. A., Tobe, V. O. and Taylor, S. L. (1997) PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Res. 25, 2745-2751 https://doi.org/10.1093/nar/25.14.2745
  18. Picoult-Newberg, L., Ideker, T. E., Pohl, M. G., Taylor, S. L., Donaldson, M. A., Nickerson, D. A. and Boyce-Jacino, M. (1999) Mining SNPs from EST databases. Genome Res. 9, 167-174
  19. Taillon-Miller, P., Gu, Z., Li, Q., Hillier, L. and Kwok, P. Y. (1998) Overlapping genomic sequences: a treasure trove of single-nucleotide polymorphisms. Genome Res. 8, 748-754 https://doi.org/10.1101/gr.8.7.748
  20. Toivonen, H. T., Onkamo, P., Vasko, K., Ollikainen, V., Sevon, P., Mannila, H., Herr, M. and Kere, J. (2000) Data mining applied to linkage disequilibrium mapping. Am. J. Hum. Genet. 67, 133-145 https://doi.org/10.1086/302954
  21. Vignal, A., Milan, D., SanCristobal, M. and Eggen, A. (2002) A review on SNP and other types of molecular markers and their use in animal genetics. Genet. Sel. Evol. 34, 275-305 https://doi.org/10.1186/1297-9686-34-3-275
  22. Wang, F. G., Fan, J. B., Siao., C., Berno, A., Young, P., Sapolsky, R., Ghandour, G., Perkins, N., Winchester, E., Spencer, J., Kruglyak, L., Stein, L., Hsie, L., Topaloglou, T., Hubbell, E., Robinson, E., Mittmann, M., Morris, M. S., Shen, N., Kilburn, D., Rioux, J., Nusbaum, C., Rozen, S., Hudson, T. J. and Lander, E. S. (1998) Large-scale identification, mapping, and genotyping of single nucleotide polymorphisms in the human genome. Science 280, 1077-1082 https://doi.org/10.1126/science.280.5366.1077
  23. Wheeler, D. L., Church, D. M., Edgar, R., Federhen, S., Helmberg, W., Madden, T. L., Pontius, J. U., Schuler, G. D., Schriml, L. M., Sequeira, E., Suzek, T. O., Tatusova, T. A. and Wagner, L. (2004) Database resources of the National Center for Biotechnology Information: update. Nucleic Acids Res. 32, 35-40 https://doi.org/10.1093/nar/gkh172
  24. Yamauchi, T., Kamon, J., Minokoshi, Y., Ito, Y., Waki, H., Uchida, S., Yamashita, S., Noda, M., Kita, S., Ueki, K., Eto, K., Akanuma, Y., Froguel, P., Foufelle, F., Ferre, P., Carling, D., Kimura, S., Nagai, R., Kahn, B. B. and Kadowaki, T. (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288-1295 https://doi.org/10.1038/nm788

Cited by

  1. Identification of Differentially Expressed Genes in Distinct Skeletal Muscles in Cattle using cDNA Microarray vol.18, pp.4, 2007, https://doi.org/10.1080/10495390701413391
  2. Generation and analysis of expressed sequence tags from the bone marrow of Chinese Sika deer vol.39, pp.3, 2012, https://doi.org/10.1007/s11033-011-1060-3
  3. Identification of 1,531 cSNPs from Full-length Enriched cDNA Libraries of the Korean Native Pig Using in Silico Analysis vol.7, pp.2, 2009, https://doi.org/10.5808/GI.2009.7.2.065
  4. A novel SNP of the PNRC1 gene and its association with reproductive traits in Tsaiya ducks vol.78, pp.1, 2012, https://doi.org/10.1016/j.theriogenology.2012.01.029
  5. A novel non-synonymous SNP of the COLX gene and its association with duck reproductive traits vol.26, pp.5, 2012, https://doi.org/10.1016/j.mcp.2012.05.003
  6. Discovery of cSNPs in pig using full-length enriched cDNA libraries of the Korean native pig as a source of genetic diversity vol.12, pp.4, 2007, https://doi.org/10.1007/BF02931066
  7. Novel Genetic Markers of the Carbonic Anhydrase II Gene Associated with Egg Production and Reproduction Traits in Tsaiya Ducks vol.48, pp.1, 2013, https://doi.org/10.1111/j.1439-0531.2012.02038.x