DOI QR코드

DOI QR Code

Transduced Tat-α-Synuclein Protects against Oxidative Stress In vitro and In vivo

  • Choi, Hee-Soon (Department of Biomedical Sciences and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Lee, Sun-Hwa (Department of Biomedical Sciences and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Kim, So-Young (Department of Biomedical Sciences and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • An, Jae-Jin (Department of Biomedical Sciences and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Hwang, Seok-Il (Department of Biomedical Sciences and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Kim, Dae-Won (Department of Biomedical Sciences and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Yoo, Ki-Yeon (Department of Anatomy, College of Medicine, Hallym University) ;
  • Won, Moo-Ho (Department of Anatomy, College of Medicine, Hallym University) ;
  • Kang, Tae-Cheon (Department of Anatomy, College of Medicine, Hallym University) ;
  • Kwon, Hyung-Joo (Department of Microbiology, College of Medicine, Hallym University) ;
  • Kang, Jung-Hoon (Department of Genetic Engineering, Cheongju University) ;
  • Cho, Sung-Woo (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine) ;
  • Kwon, Oh-Shin (Department of Biochemistry, Kyungpook National University) ;
  • Choi, Jin-Hi (Research Laboratory of Cell Tech. Korea) ;
  • Park, Jin-Seu (Department of Biomedical Sciences and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Eum, Won-Sik (Department of Biomedical Sciences and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Choi, Soo-Young (Department of Biomedical Sciences and Research Institute for Bioscience and Biotechnology, Hallym University)
  • Received : 2006.01.16
  • Accepted : 2006.01.18
  • Published : 2006.05.31

Abstract

Parkinson's disease (PD) is a common neurodegenerative disorder and is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. Although many studies showed that the aggregation of $\alpha$-synuclein might be involved in the pathogenesis of PD, its protective properties against oxidative stress remain to be elucidated. In this study, human wild type and mutant $\alpha$-synuclein genes were fused with a gene fragment encoding the nine amino acid trans activator of transcription (Tat) protein transduction domain of HIV-l in a bacterial expression vector to produce a genetic in-frame WT Tat-$\alpha$-synuclein (wild type) and mutant Tat-a-synucleins (mutants; A30P and A53T), respectively, and we investigated the protective effects of wild type and mutant Tat-$\alpha$-synucleins in vitro and in vivo. WT Tat-$\alpha$-synuclein rapidly transduced into an astrocyte cells and protected the cells against paraquat induced cell death. However, mutant Tat-$\alpha$-synucleins did not protect at all. In the mice models exposed to the herbicide paraquat, the WT Tat-$\alpha$-synuclein completely protected against dopaminergic neuronal cell death, whereas mutants failed in protecting against oxidative stress. We found that these protective effects were characterized by increasing the expression level of heat shock protein 70 (HSP70) in the neuronal cells and this expression level was dependent on the concentration of transduced WT Tat-$\alpha$-synuclein. These results suggest that transduced Tat-$\alpha$-synuclein might protect cell death from oxidative stress by increasing the expression level of HSP70 in vitro and in vivo and this may be of potential therapeutic benefit in the pathogenesis of PD.

Keywords

References

  1. Albani, D. A., Peverelli, E., Rametta, R., Batelli, S., Veschini, L., Negro, A. and Forloni, G. (2004) Protective effect of TATdelivered ${\alpha}$-synuclein: relevance of the C-terminal domain and involvement of HSP70. FASEB J. 18, 1713-1725 https://doi.org/10.1096/fj.04-1621fje
  2. Bellmann, K., Wenz, A., Radons, J., Burkart, V., Kleemann, R. and Kolb, H. (1995) Heat shock induces resistance in rat pancreatic islet cells against nitric oxide, oxygen radicals and streptozotocin toxicity in vitro. J. Clin. Invest. 95, 2840-2845 https://doi.org/10.1172/JCI117989
  3. Bradford, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  4. Choi, D. G., Yoo, N. H., Yu, C. Y., de los Reyes, B. and Yun, S. J. (2004) The activities of antioxidant enzymes in response to oxidative stresses and hormones in paraquat-tolerant Rehmannia glutinosa plants. J. Biochem. Mol. Biol. 37, 618-624 https://doi.org/10.5483/BMBRep.2004.37.5.618
  5. Choung, I. S., Eum, W. S., Li, M. Z., Sin, G. S., Kang, J. H., Park, J., Choi, S. Y. and Kwon, H. Y. (2003) Transduction of Tat-superoxide dismutase into insulin-producing MIN6N cells reduces streptozotocin-induced cytotoxicity. Kor. J. Physiol. Pharmacol. 7, 163-168
  6. Clayton, D. F. and George, J. M. (1999) Synucleins in synaptic plasticity and neuro- degenerative disorders. J. Neurosci. Res. 58, 120-129 https://doi.org/10.1002/(SICI)1097-4547(19991001)58:1<120::AID-JNR12>3.0.CO;2-E
  7. Clayton, D. and George, J. (1998) The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci. 21, 249-254 https://doi.org/10.1016/S0166-2236(97)01213-7
  8. Cohen, G. (2000) Oxidative stress, mitochondrial respiration and Parkinson's disease. Ann. N. Y. Acad. Sci. 899, 112-120 https://doi.org/10.1111/j.1749-6632.2000.tb06180.x
  9. Conway, K. A., Harper, J. D. and Lansbury, P. T. (1998) Accelerated in vitro fibril formation by a mutant alphasynuclein linked to early-onset Parkinson disease. Nat. Med. 4, 1318-1320 https://doi.org/10.1038/3311
  10. Cuervo, A. M., Stefanis, L., Fredenburg, R., Lansbury, P. T. and Sulzer, D. (2004) Impaired degradation of mutant alphasynuclein by chaperone-mediated autophagy. Science 305, 1292-1295 https://doi.org/10.1126/science.1101738
  11. Dauer, W. and Przedborski, S. (2003) Parkinson's disease: mechanisms and models. Neuron 39, 889-909 https://doi.org/10.1016/S0896-6273(03)00568-3
  12. Dawson, T. and Dawson, V. L. (2003) Molecular pathways of neurodegeneration in Parkinson's disease. Science 302, 819- 822 https://doi.org/10.1126/science.1087753
  13. Dou, F., Netzer, W. J., Tanemura, K., Li, F., Hartl, F. U., Takashima, A., Gouras, G. K., Greengard, P. and Xu, H. (2003) Chaperones increase associated of tau protein with microtubules. Proc. Natl. Acad. Sci. USA 100, 721-726 https://doi.org/10.1073/pnas.242720499
  14. Eum, W. S., Choung, I. S., Li, M. Z., Kang, J. H., Kim, D. W., Park, J., Kwon, H. Y. and Choi, S. Y. (2004a) HIV-1 Tatmediated protein transduction of Cu,Zn-superoxide dismutase into pancreatic beta cells in vitro and in vivo. Free Radic. Biol. Med. 37, 339-349 https://doi.org/10.1016/j.freeradbiomed.2004.04.036
  15. Eum, W. S., Kim, D. W., Hwang, I. K., Yoo, K. Y., Kang, T. C., Jang, S. H., Choi, H. S., Choi, S. H., Kim, Y. H., Kim, S. Y., Kwon, H. Y., Kang, J. H., Kwon, O. S., Cho, S. W., Lee, K. S., Park, J., Won, M. H. and Choi, S. Y. (2004b) In vivo protein transduction: Biologically active intact PEP-1- superoxide dismutase fusion protein efficiently protects against ischemic insult. Free Radic. Biol. Med. 37, 1656-1669 https://doi.org/10.1016/j.freeradbiomed.2004.07.028
  16. Fawell, S., Seery, J. and Daikh, Y. (1991) Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. USA 91, 664-668
  17. Feany, N. B. and Bender, W. W. (2000) A Drosophila model of Parkinson's disease. Nature 404, 394-398 https://doi.org/10.1038/35006074
  18. Forno, L. S. (1996) Neuropathology of Parkinson's disease. J. Neuropathol. Exp. Neurol. 55, 259-272 https://doi.org/10.1097/00005072-199603000-00001
  19. Garrido, C., Gurbuxani, S., Ravagnan, L. and Kroemer, G. (2001) Heat shock proteins: endogeneous modulators of apoptotic cell death. Biochem. Biophys Res. Commum. 286, 433-442 https://doi.org/10.1006/bbrc.2001.5427
  20. Goedert, M. (1997) Familial Parkinson's disease: The awakening of á-synuclein. Nature 388, 232-233
  21. Gorell, J. M., Johnson, C. C., Rybicki, B. A., Peterson, E. L. and Richardson, R. J. (1998) The risk of Parkinson's disease with exposure to pesticides, farming, well water, and rural living. Neurol. 50, 1346-1350 https://doi.org/10.1212/WNL.50.5.1346
  22. Hashimoto, M., Hsu, L. J., Rockenstein, E., Takenouchi, T., Mallory, M. and Masliah, E. (2002) ${\alpha$-synuclein protects against oxidative stress via inactivation of the c-Jun N-terminal kinase stress-signaling pathway in neuronal cells. J. Biol. Chem. 277, 11465-11472 https://doi.org/10.1074/jbc.M111428200
  23. Hertzman, C., Wiens, M., Bowering, D., Snow, B. and Calne, D. (1990) Parkinson's disease: A case-control study of occupational and environmental risk factors. Am. J. Ind. Med. 17, 349-355 https://doi.org/10.1002/ajim.4700170307
  24. Hsu, L. J., Sagara, Y., Arroyo, A., Rockenstein, F., Sisk, A., Mallory, M., Wong, J., Takenouchi, T., Hashimoto, M. and Masliah, E. (2000) Alpha-synuclein promotes mitochondrial deficit and oxidative stress. Am. J. Pathol. 157, 401-410 https://doi.org/10.1016/S0002-9440(10)64553-1
  25. Hunot, S. and Hirsch, E. C. (2003) Neuroinflammatory processes in Parkinson's disease. Ann. Neurol. 53, S49-S60. https://doi.org/10.1002/ana.10481
  26. Iwai, A., Masliah, E., Yoshimoto, M., Ge, N., Flangan, L., De Silva, R., Kittel, A. and Saitoh, T. (1995) The precursor protein of non-A beta component of Alzheimer's disease amyloid is a presynaptic protein of the central nervous system. Neuron 14, 467-475 https://doi.org/10.1016/0896-6273(95)90302-X
  27. Janko, J. and Tolosa, E. (1998) In Parkinson's Disease and Movement Disorders, 3rd ed. Jankovic, J. and Tolosa, E. (eds.), pp. 67-103, Lippincott, Williams and Wilkins, New York, USA
  28. Jin, L. H., Bahn, J. H., Eum, W. S., Kwon, H. Y., Jang, S. H., Han, K. H., Kang, T. C., Won, M. H., Kang, J. H., Cho, S. W., Park, J. and Choi, S. Y. (2001) Transduction of human catalase mediated by an HIV-1 Tat protein basic domain and argininerich peptides into mammalian cells. Free Radic. Biol. Med. 31, 1509-1519 https://doi.org/10.1016/S0891-5849(01)00734-1
  29. Kang, T. C., Park, S. K., Hwang, I. K., An, S. J., Choi, S. Y., Cho, S. W. and Won, M. H. (2002) Spatial and temporal alterations in the GABA shunt in the gerbil hippocampus following transient ischemia. Brain Res. 944, 10-18 https://doi.org/10.1016/S0006-8993(02)02596-9
  30. Kim, K. S., Choi, S. Y., Kwon, H. Y., Won, M. H., Kang, T. C. and Kang, J. H. (2002) Aggregation of ${\alpha$-synuclein induced by the Cu,Zn-superoxide dismutase and hydrogen peroxide system. Free Radic. Biol. Med. 32, 544-550 https://doi.org/10.1016/S0891-5849(02)00741-4
  31. Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Graeber, M., Kosel, S., Przuntek, H., Epplen, J. T., Schols, L. and Riess, O. (1998) Ala30Pro mutation in the gene encoding alphasynuclein in Parkinson's disease. Nat. Genet. 18, 106-108 https://doi.org/10.1038/ng0298-106
  32. Kuhn, K., Wellen, J., Link, N., Maskri, L., Lubbert, H. and Stichel, C. C. (2003) The mouse MPTP model: gene expression changes in dopaminergic neurons. Eur. J. Neurosci. 17, 1-12 https://doi.org/10.1046/j.1460-9568.2003.02408.x
  33. Kwon, H. Y., Eum, W. S., Jang, H. W., Kang, J. H., Ryu, J. Y., Lee, B. R., Jin, L. H., Park, J. and Choi, S. Y. (2000) Transduction of Cu,Zn-superoxide dismutase mediated by an HIV-1 Tat protein basic domain into mammalian cells. FEBS Letts. 485, 163-167 https://doi.org/10.1016/S0014-5793(00)02215-8
  34. Li, J., Uversky, V. N. and Fink, A. L. (2001) Effect of familial Parkinson's disease point mutations A30P and A53T on the structural properties, aggregation and fibrillation of human ${\alpha$- synuclein. Biochemistry 40, 11604-11613 https://doi.org/10.1021/bi010616g
  35. Liou, H. H., Tsai, M. C., Chen, C. J., Jeng, J. S., Chang, Y. C., Chen, S. Y. and Chen, R. C. (1997) Environmental risk factors and Parkinson's disease: A case-control study in Taiwan. Neurol. 48, 1583-1588 https://doi.org/10.1212/WNL.48.6.1583
  36. Manning-Bog, A. B., McCormack, A. L., Li, J., Uversky, V. N., Fink, A. L. and Di Monte, D. A. (2002) The herbicide paraquat causes up-regulation and aggregation of ${\alpha$-synuclein in mice. J. Biol. Chem. 277, 1641-1644 https://doi.org/10.1074/jbc.C100560200
  37. Manning-Bog, A. B., McCormack, A. L., Purisai, M. G., Bolin, L. M. and Di Monte, D. A. (2003) ${\alpha$-synuclein overexpression protects against paraquat-induced neurodegeneration. J. Neurosci. 23, 3095-3099 https://doi.org/10.1523/JNEUROSCI.23-08-03095.2003
  38. Masliah, E., Rockenstein, E., Veinbergs, I., Mallory, M., Hashimoto, M., Takeda, A., Sagara, Y., Sisk, A. and Mucke, L. (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287, 1265-1269 https://doi.org/10.1126/science.287.5456.1265
  39. McCormack, A. L., Thiruchelvam, M., Manning-Bog, A. B., Thiffault, C., Langston, J. W., Cory-Slechta, D. A. and Di Monte, D. A. (2002) Environmental risk factors and Parkinson's disease: Selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol. Dis. 10, 119-127 https://doi.org/10.1006/nbdi.2002.0507
  40. Moosavi, M. A., Yazdanparast, R. and Sanati, M. H. (2005) The cytotoxic and anti-proliferative effects of 3-hydrogenkwadaphnin in K562 and Jurkat cells is reduced by guanosine. J. Biochem. Mol. Biol. 38, 391-398 https://doi.org/10.5483/BMBRep.2005.38.4.391
  41. Narhi, L., Wood, S. J., Steavenson, S., Jiang, Y., Wu, G. M., Anafi, D., Kaufman, S. A., Martin, F., Stiney, K., Denis, P., Wypych, J., Biere, A. L. and Citron, M. (1999) Both familial Parkinson's disease mutations accelerate ${\alpha}$-synuclein aggregation. J. Biol. Chem. 274, 9843-9846 https://doi.org/10.1074/jbc.274.14.9843
  42. Peng, J., Stevenson, F. F., Doctrow, S. R. and Anderson, J. K. (2005) Superoxide dismutase/catalase mimetics are neuroprotective against selective paraquat-mediated dopaminergic neuron death in the substantial nigra: implications for Parkinson's disease. J. Biol. Chem. 280, 29194-29198 https://doi.org/10.1074/jbc.M500984200
  43. Prochiantz, A. (2000) Messenger proteins: homeoproteins, TAT and others. Curr. Opin. Cell Biol. 12, 400-406 https://doi.org/10.1016/S0955-0674(00)00108-3
  44. Schwartze, S. R., Ho, A., Vocero-Akbani, A. and Dowdy, S. F. (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569-1572 https://doi.org/10.1126/science.285.5433.1569
  45. Semchuk, K. M., Love, E. J. and Lee, R. G. (1993) Parkinson's disease: A test of the multifactorial etiologic hypothesis. Neurol. 43, 1173-1180 https://doi.org/10.1212/WNL.43.6.1173
  46. Vives, E., Brodin, P. and Lebleu, B. (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272, 16010-16017 https://doi.org/10.1074/jbc.272.25.16010
  47. Wadia, J. and Dowdy, S. F. (2002) Protein transduction technology. Curr. Opin. Biotechnol. 13, 52-56 https://doi.org/10.1016/S0958-1669(02)00284-7
  48. Warner, T. T. and Schapira, A. H. (2003) Genetic and environmental factors in the cause of Parkinson's disease. Ann. Neurol. 53, S16-S25 https://doi.org/10.1002/ana.10487
  49. Zourlidou, A., Payne Smith, M. D. and Latchman, D. S. (2004) HSP27 but not HSP70 has a potent protective effect against ${\alpha$- synuclein-induced cell death in mammalian neuronal cells. J. Neurochem. 88, 1439-1448 https://doi.org/10.1046/j.1471-4159.2003.02273.x

Cited by

  1. Interaction of α-Synuclein and a Cell Penetrating Fusion Peptide with Higher Eukaryotic Cell Membranes Assessed by19F NMR vol.9, pp.4, 2012, https://doi.org/10.1021/mp200615m
  2. Prosurvival effect of human wild-type α-synuclein on MPTP-induced toxicity to central but not peripheral catecholaminergic neurons isolated from transgenic mice vol.167, pp.2, 2010, https://doi.org/10.1016/j.neuroscience.2010.02.016
  3. Alpha-synuclein protects cerebellar granule neurons against 6-hydroxydopamine-induced death vol.103, pp.2, 2007, https://doi.org/10.1111/j.1471-4159.2007.04778.x
  4. The proteomic approach in Parkinson's disease vol.1, pp.11, 2007, https://doi.org/10.1002/prca.200700264
  5. α-synuclein and Parkinson’s disease: a proteomic view vol.5, pp.2, 2008, https://doi.org/10.1586/14789450.5.2.239
  6. Construction of human LRIG1-TAT fusions and TAT-mediated LRIG1 protein delivery vol.69, 2015, https://doi.org/10.1016/j.biopha.2014.12.034
  7. Pyridoxal-5′-phosphate phosphatase/chronophin inhibits long-term potentiation induction in the rat dentate gyrus vol.19, pp.11, 2009, https://doi.org/10.1002/hipo.20568
  8. PEP-1–SOD fusion protein efficiently protects against paraquat-induced dopaminergic neuron damage in a Parkinson disease mouse model vol.41, pp.7, 2006, https://doi.org/10.1016/j.freeradbiomed.2006.06.006
  9. α-Synuclein protects SH-SY5Y cells from dopamine toxicity vol.349, pp.4, 2006, https://doi.org/10.1016/j.bbrc.2006.08.163
  10. Biochemical, cell biological, pathological, and therapeutic aspects of Krabbe's disease vol.94, pp.11, 2016, https://doi.org/10.1002/jnr.23873
  11. Potential role of pyridoxal-5′-phosphate phosphatase/chronopin in epilepsy vol.211, pp.1, 2008, https://doi.org/10.1016/j.expneurol.2008.01.029
  12. Transcription factor-based modulation of neural stem cell differentiation using direct protein transduction vol.67, pp.14, 2010, https://doi.org/10.1007/s00018-010-0347-1
  13. p53 in neurodegenerative diseases and brain cancers vol.142, pp.1, 2014, https://doi.org/10.1016/j.pharmthera.2013.11.009
  14. Protective Role of Heat Shock Proteins in Parkinson’s Disease vol.8, pp.4, 2011, https://doi.org/10.1159/000321548
  15. TAT transduction: the molecular mechanism and therapeutic prospects vol.13, pp.10, 2007, https://doi.org/10.1016/j.molmed.2007.08.002
  16. Inhibition of LPS-induced cyclooxygenase 2 and nitric oxide production by transduced PEP-1-PTEN fusion protein in Raw 264.7 macrophage cells vol.40, pp.6, 2008, https://doi.org/10.3858/emm.2008.40.6.629
  17. Effects of the TAT Peptide Orientation and Relative Location on the Protein Transduction Efficiency vol.79, pp.5, 2012, https://doi.org/10.1111/j.1747-0285.2011.01315.x
  18. From α-synuclein to synaptic dysfunctions: New insights into the pathophysiology of Parkinson's disease vol.1476, 2012, https://doi.org/10.1016/j.brainres.2012.04.014
  19. Small-molecule mimics of an α-helix for efficient transport of proteins into cells vol.4, pp.2, 2007, https://doi.org/10.1038/nmeth997
  20. Pyridoxine 5′-phosphate oxidase, not pyridoxal kinase, involves in long-term potentiation induction in the rat dentate gyrus vol.19, pp.1, 2009, https://doi.org/10.1002/hipo.20477
  21. Proteomics as a tool to investigate cell models for dopamine toxicity vol.14, 2008, https://doi.org/10.1016/j.parkreldis.2008.04.016