DOI QR코드

DOI QR Code

Novel Preparation and Characterization of the α4-loop-α5 Membrane-perturbing Peptide from the Bacillus thuringiensis Cry4Ba δ-endotoxin

  • Leetachewa, Somphob (Laboratory of Molecular Biophysics and Structural Biochemistry, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus) ;
  • Katzenmeier, Gerd (Laboratory of Molecular Biophysics and Structural Biochemistry, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus) ;
  • Angsuthanasombat, Chanan (Laboratory of Molecular Biophysics and Structural Biochemistry, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus)
  • Received : 2005.12.12
  • Accepted : 2006.01.30
  • Published : 2006.05.31

Abstract

Helices 4 and 5 of the Bacillus thuringiensis Cry4Ba $\delta$-endotoxin have been shown to be important determinants for mosquito-larvicidal activity, likely being involved in membrane-pore formation. In this study, the Cry4Ba mutant protein containing an additional engineered tryptic cleavage site was used to produce the $\alpha4$-$\alpha5$ hairpin peptide by an efficient alternative strategy. Upon solubilization of toxin inclusions expressed in Escherichia coli and subsequent digestion with trypsin, the 130-kDa mutant protoxin was processed to protease-resistant fragments of ca. 47, 10 and 7 kDa. The 7-kDa fragment was identified as the $\alpha4$-loop-$\alpha5$ hairpin via N-terminal sequencing and mass spectrometry, and was successfully purified by size-exclusion FPLC and reversed-phase HPLC. Using circular dichroism spectroscopy, the 7-kDa peptide was found to exist predominantly as an $\alpha$-helical structure. Membrane perturbation studies by using fluorimetric calcein-release assays revealed that the 7-kDa helical hairpin is highly active against unilamellar liposomes compared with the 65-kDa activated full-length toxin. These results directly support the role of the $\alpha4$-loop-$\alpha5$ hairpin in membrane perturbation and pore formation of the full-length Cry4Ba toxin.

Keywords

References

  1. Allen, T. M. and Cleland, L. G. (1980) Serum-induced leakage of liposome contents. Biochim. Biophys. Acta 597, 418-426 https://doi.org/10.1016/0005-2736(80)90118-2
  2. Angsuthanasombat, C., Crickmore, N. and Ellar, D. J. (1993) Effects on toxicity of eliminating a cleavage site in a predicted interhelical loop in Bacillus thuringiensis CryIVB ${\delta}$-endotoxin. FEMS Microbiol. Lett. 111, 255-261
  3. Angsuthanasombat, C., Keeratichamreon, S., Leetachewa, S., Katzenmeier, G. and Panyim S. (2001) Directed mutagenesis of the Bacillus thuringiensis Cry11A toxin reveals a crucial role in larvicidal activity of arginine-136 in helix 4. J. Biochem. Mol. Biol. Biophys. 34, 402-407
  4. Angsuthanasombat, C., Uawithya, P., Leetachewa, S., Pornwiroon, W., Ounjai, P., Kerdcharoen, T., Katzenmeier, G. R. and Panyim, S. (2004) Bacillus thuringiensis Cry4A and Cry4B mosquito-larvicidal proteins: homology-based 3D model and implications for toxin activity. J. Biochem. Mol. Biol. 37, 304- 313 https://doi.org/10.5483/BMBRep.2004.37.3.304
  5. Aronson, A. I., Beckman, W. and Dunn, P. (1986) Bacillus thuringiensis and related insect pathogens. Microbiol. Rev. 50, 1-24
  6. Boonserm, P., Davis, P., Ellar, D. J. and Li, J. (2005) Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. J. Mol. Biol. 348, 363-382 https://doi.org/10.1016/j.jmb.2005.02.013
  7. Boonserm, P., Pornwiroon, W., Katzenmeier, G., Panyim, S. and Angsuthanasombat, C. (2004) Optimised expression in Escherichia coli and purification of the functional form of the Bacillus thuringiensis Cry4Aa ${\delta}$-endotoxin. Protein Expr. Purif. 35, 397-403 https://doi.org/10.1016/j.pep.2004.02.016
  8. Crickmore, N., Zeigler, D. R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J. and Dean, D. H. (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 807-813
  9. De Maagd, R. A., Bravo, A. and Crickmore, N. (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 17, 193-199 https://doi.org/10.1016/S0168-9525(01)02237-5
  10. Fisher, L. E. and Engelman, D. M. (2001) High-yield synthesis and purification of an ${\alpha}$-helical transmembrane domain. Anal. Biochem. 293, 102-108 https://doi.org/10.1006/abio.2001.5122
  11. Flores, H., Soberon, X., Sanchez, J. and Bravo, A. (1997) Isolated domain II and III from the Bacillus thuringiensis Cry1Ab ${\delta}$- endotoxin binds to lepidopteran midgut membranes. FEBS Lett. 414, 313-318 https://doi.org/10.1016/S0014-5793(97)01015-6
  12. Galitsky, N., Cody, V., Wojtczak, A., Ghosh, D., Luft, J. R., Pangborn, W. and English, L. (2001) Structure of the insecticidal bacterial ${\delta}$-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallogr. D. Biol. Crystallogr. 57, 1101- 1109 https://doi.org/10.1107/S0907444901008186
  13. Gazit, E., La Rocca, P., Sansom, M. S. and Shai, Y. (1998) The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensis ${\delta}$-endotoxin are consistent with an 'umbrella-like' structure of the pore. Proc. Natl. Acad. Sci. USA 95, 12289-12294 https://doi.org/10.1073/pnas.95.21.12289
  14. Gerber, D. and Shai, Y. (2000) Insertion and organization within membranes of the ${\delta}$-endotoxin pore-forming domain, helix 4- loop-helix 5, and inhibition of its activity by a mutant helix 4 peptide. J. Biol. Chem. 275, 23602-23607 https://doi.org/10.1074/jbc.M002596200
  15. Greenfield, N. and Fasman, G. D. (1969) Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8, 4108-4116 https://doi.org/10.1021/bi00838a031
  16. Grochulski, P. Masson, L., Borisova, S., Pusztai-Carey, M., Schwartz, J. L., Brousseau, R., and Cygler, M. (1995) Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation. J. Mol. Biol. 254, 447-464 https://doi.org/10.1006/jmbi.1995.0630
  17. Kanintronkul, Y., Sramala, I., Katzenmeier, G., Panyim, S. and Angsuthanasombat, C. (2003) Specific mutations within the ${\alpha}$4-${\alpha}$5 loop of the Bacillus thuringiensis Cry4B toxin reveal a crucial role for Asn-166 and Tyr-170. Mol. Biotechnol. 24, 11- 20 https://doi.org/10.1385/MB:24:1:11
  18. Kanintronkul, Y., Srikhirin, T., Angsuthanasombat, C. and Kerdcharoen, T. (2005) Insertion behavior of the Bacillus thuringiensis Cry4Ba insecticidal protein into lipid monolayers. Arch. Biochem. Biophys. 442, 180-186 https://doi.org/10.1016/j.abb.2005.08.005
  19. Knowles, B. H. (1994) Mechanism of action of Bacillus thuringiensis insecticidal ${\delta}$-endotoxins. Adv. Insect Physiol. 24, 275-308 https://doi.org/10.1016/S0065-2806(08)60085-5
  20. Krittanai, C., Lungchukiet, P., Ruangwetdee, S., Tantitippawan, T., Panyim, S., Katzenmeier, G. and Angsuthanasombat, C. (2001) Redesign of an interhelical loop of the Bacillus thuringiensis Cry4B ${\delta}$-endotoxin for proteolytic cleavage. J. Biochem. Mol. Biol. 34, 150-155
  21. Li, J. D., Carroll, J. and Ellar, D. J. (1991) Crystal structure of insecticidal ${\delta}$-endotoxin from Bacillus thuringiensis at 2.5${\AA}$ resolution. Nature 353, 815-821 https://doi.org/10.1038/353815a0
  22. Likitvivatanavong, S., Katzenmeier, G. and Angsuthanasombat, C. (2006) Asn183 in ${\alpha}$5 is essential for oligomerisation and toxicity of the Bacillus thuringiensis Cry4Ba toxin. Arch. Biochem. Biophys. 445, 46-55 https://doi.org/10.1016/j.abb.2005.11.007
  23. Marheineke, K., Grunewald, S., Christie, W. and Reilander, H. (1998) Lipid composition of Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tn) insect cells used for baculovirus infection. FEBS Lett. 441, 49-52 https://doi.org/10.1016/S0014-5793(98)01523-3
  24. Masson, L., Tabashnik, B. E., Liu, Y. B., Brousseau, R. and Schwartz, J. L. (1999) Helix 4 of the Bacillus thuringiensis Cry1Aa toxin lines the lumen of the ion channel. J. Biol. Chem. 274, 31996-32000 https://doi.org/10.1074/jbc.274.45.31996
  25. Morse, R. J., Yamamoto, T. and Stroud, R. M. (2001) Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure (Camb.) 9, 409-417 https://doi.org/10.1016/S0969-2126(01)00601-3
  26. Moonsom, S. (2004) Expression and Characterization of the cloned domain II and II-III fragments of the Bacillus thuringiensis Cry4Ba larvicidal protein. M.Sc. Thesis, Faculty of Graduates Studies, Mahidol University, Bangkok, Thailand
  27. Mrsny, R. J., Volwerk, J. J. and Griffith, O. H. (1986) A simplified procedure for lipid phosphorus analysis shows that digestion rates vary with phospholipid structure. Chem. Phys. Lipids 39, 185-191 https://doi.org/10.1016/0009-3084(86)90111-8
  28. Nunez-Valdez, M., Sanchez, J., Lina, L., Guereca, L. and Bravo, A. (2001) Structural and functional studies of ${\alpha}$-helix 5 region from Bacillus thuringiensis Cry1Ab ${\delta}$-endotoxin. Biochim. Biophys. Acta 1546, 122-131 https://doi.org/10.1016/S0167-4838(01)00132-7
  29. Pornwiroon, W., Katzenmeier, G., Panyim, S. and Angsuthanasombat, C. (2004) Aromaticity of Tyr-202 in the ${\alpha}$4-${\alpha}$5 loop is essential for toxicity of the Bacillus thuringiensis Cry4A toxin. J. Biochem. Mol. Biol. 37, 292-297 https://doi.org/10.5483/BMBRep.2004.37.3.292
  30. Puntheeranurak, T., Leetachewa, S., Katzenmeier, G., Panyim S., and Angsuthanasombat, C. (2001) Expression and biochemical Characterization of the Bacillus thuringiensis Cry4B ${\alpha}$4-${\alpha}$5 pore-forming fragment. J. Biochem. Mol. Biol. Biophys. 34, 293-298
  31. Puntheeranurak, T., Uawithya, P., Potvin, L., Angsuthanasombat, C., and Schwartz, J. L. (2004) Ion channels formed in planar lipid bilayers by the dipteran-specific Cry4B Bacillus thuringiensis toxin and its ${\alpha}$1-${\alpha}$5 fragment. Mol. Membr. Biol. 21, 67-74 https://doi.org/10.1080/09687680310001625792
  32. Puntheeranurak, T., Stroh, C., Zhu, R., Angsuthanasombat, C., and Hinterdorfer, P. (2005) Structure and distribution of the Bacillus thuringiensis Cry4Ba toxin in lipid membranes. Ultramicroscopy 105, 115-124 https://doi.org/10.1016/j.ultramic.2005.06.026
  33. Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R. and Dean, D. H. (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 775-806
  34. Schwartz, J. L., Juteau, M., Grochulski, P., Cygler, M., Prefontaine, G., Brousseau, R. and Masson, L. (1997) Restriction of intramolecular movements within the Cry1Aa toxin molecule of Bacillus thuringiensis through disulfide bond engineering. FEBS Lett. 410, 397-402 https://doi.org/10.1016/S0014-5793(97)00626-1
  35. Sramala, I., Leetachewa, S., Krittanai, C., Katzenmeier, G., Panyim S. and Angsuthanasombat, C. (2001) Charged residue screening in helix 4 of the Bacillus thuringiensis Cry4B toxin reveals on critical residue for larvicidal activity. J. Biochem. Mol. Biol. Biophys. 5, 219-225
  36. Sramala, I., Uawithya, P., Chanama, U., Leetachewa, S., Krittanai, C., Katzenmeier, G., Panyim S. and Angsuthanasombat, C. (2000) Single proline substitutions of selected helices of the Bacillus thuringiensis Cry4B toxin effect inclusion solutility and larvicidal activity. J. Biochem. Mol. Biol. Biophys. 4, 187- 193
  37. Tapaneeyakorn, S., Pornwiroon, W., Katzenmeier, G. and Angsuthanasombat, C. (2005) Structural requirements of the unique disulphide bond and the proline-rich motif within the ${\alpha}$4-${\alpha}$5 loop for larvicidal activity of the Bacillus thuringiensis Cry4Aa ${\delta}$-endotoxin. Biochem. Biophys. Res. Commun. 330, 519-525 https://doi.org/10.1016/j.bbrc.2005.03.006
  38. Tuntitippawan, T., Boonserm, P., Katzenmeier, G. and Angsuthanasombat, C. (2005) Targeted mutagenesis of loop residues in the receptor-binding domain of the Bacillus thuringiensis Cry4Ba toxin affects larvicidal activity. FEMS Microbiol. Lett. 242, 325-332 https://doi.org/10.1016/j.femsle.2004.11.026
  39. Uawithya, P., Tuntitippawan, T., Katzenmeier, G., Panyim, S. and Angsuthanasombat, C. (1998) Effects on larvicidal activity of single proline substitutions in ${\alpha}$3 or ${\alpha}$4 of the Bacillus thuringiensis Cry4B toxin. Biochem. Mol. Biol. Int. 44, 825- 832
  40. Von Tersch, M. A., Slatin, S. L., Kulesza, C. A. and English, L. H. (1994) Membrane-permeabilizing activities of Bacillus thuringiensis coleopteran-active toxin CryIIIB2 and CryIIIB2 domain I peptide. Appl. Environ. Microbiol. 60, 3711-3717
  41. Walters, F. S., Slatin, S. L., Kulesza, C. A. and English, L. H. (1993) Ion channel activity of N-terminal fragments from CryIA(c) ${\delta}$-endotoxin. Biochem. Biophys. Res. Commun. 196, 921-926 https://doi.org/10.1006/bbrc.1993.2337
  42. Whalon, M. E. and Wingerd, B. A. (2003) Bt: mode of action and use. Arch. Insect Biochem. Physiol. 54, 200-211 https://doi.org/10.1002/arch.10117

Cited by

  1. Potential-dependent permeabilization of plasma membrane by the peptide BTM-P1 derived from the Cry11Bb1 protoxin vol.1788, pp.2, 2009, https://doi.org/10.1016/j.bbamem.2008.12.009
  2. Functional assembly of 260-kDa oligomers required for mosquito-larvicidal activity of the Bacillus thuringiensis Cry4Ba toxin vol.68, 2015, https://doi.org/10.1016/j.peptides.2014.11.013
  3. Functional characterization of truncated fragments of Bacillus sphaericus binary toxin BinB vol.106, pp.2, 2011, https://doi.org/10.1016/j.jip.2010.10.004
  4. Functional characterizations of residues Arg-158 and Tyr-170 of the mosquito-larvicidal Bacillus thuringiensis Cry4Ba vol.47, pp.10, 2014, https://doi.org/10.5483/BMBRep.2014.47.10.192
  5. Lipid-induced conformation of helix 7 from the pore-forming domain of the Bacillus thuringiensis Cry4Ba toxin: Implications for toxicity mechanism vol.482, pp.1-2, 2009, https://doi.org/10.1016/j.abb.2008.11.025
  6. Bacillus thuringiensis Cry4Aa insecticidal protein: Functional importance of the intrinsic stability of the unique α4–α5 loop comprising the Pro-rich sequence vol.1844, pp.6, 2014, https://doi.org/10.1016/j.bbapap.2014.03.003
  7. Jaburetox-2Ec: An insecticidal peptide derived from an isoform of urease from the plant Canavalia ensiformis vol.28, pp.10, 2007, https://doi.org/10.1016/j.peptides.2007.08.009
  8. Electrical hypothesis of toxicity of the Cry toxins for mosquito larvae vol.33, pp.1, 2013, https://doi.org/10.1042/BSR20120101
  9. Importance of polarity of the α4–α5 loop residue—Asn166 in the pore-forming domain of the Bacillus thuringiensis Cry4Ba toxin: Implications for ion permeation and pore opening vol.1838, pp.1, 2014, https://doi.org/10.1016/j.bbamem.2013.10.002
  10. Potential Prepore Trimer Formation by theBacillus thuringiensisMosquito-specific Toxin vol.290, pp.34, 2015, https://doi.org/10.1074/jbc.M114.627554