DOI QR코드

DOI QR Code

cDNA Cloning, Sequence Analysis and Molecular Modeling of a New Peptide from the Scorpion Buthotus saulcyi Venom

  • Received : 2005.12.06
  • Accepted : 2006.02.03
  • Published : 2006.05.31

Abstract

In this study, the cDNA of a new peptide from the venom of the scorpion, Buthotus saulcyi, was cloned and sequenced. It codes for a 64 residues peptide (Bsaul1) which shares high sequence similarity with depressant insect toxins of scorpions. The differences between them mainly appear in the loop1 which connects the $\beta$-strand1 to the $\alpha$-helix and seems to be functionally important in long chain scorpion neurotoxins. This loop is three amino acids longer in Bsaul1 compared to other depressant toxins. A comparative amino acid sequence analysis done on Bsaul1 and some of $\alpha$-, $\beta$-, excitatory and depressant toxins of scorpions showed that Bsaul1 contains all the residues which are highly conserved among long chain scorpion neurotoxins. Structural model of Bsaul1 was generated using Ts1 (a $\beta$-toxin that competes with the depressant insect toxins for binding to $Na^+$ channels) as template. According to the molecular model of Bsaul1, the folding of the polypeptide chain is being composed of an anti-parallel three-stranded $\beta$-sheet and a stretch of $\alpha$-helix, tightly bound by a set of four disulfide bridges. A striking similarity in the spatial arrangement of some critical residues was shown by superposition of the backbone conformation of Bsaul1 and Ts1.

Keywords

References

  1. Amininasab, M., Elmi, M. M., Endlich, N., Endlich, K., Parekh, N., Naderi-Manesh, H., Schaller, J., Mostafavi, H., Sattler, M., Sarbolouki, M. N. and Muhle-Goll, C. (2004) Functional and structural characterization of a novel member of the natriuretic family of peptides from the venom of Pseudocerastes persicus. FEBS Lett. 557, 104-108 https://doi.org/10.1016/S0014-5793(03)01455-8
  2. Barhanin, J., Ildefonse, M., Rougier, O., Sampaio, S. V., Giglio, J. R. and Lazdunski, M. (1984) Tityus gamma toxin, a high affinity effector of the $Na^+$ channel in muscle, with a selectivity for channels in the surface membrane. Pflugers Arch. 400, 22- 27 https://doi.org/10.1007/BF00670531
  3. Burley, S. K. and Petsko, G. A. (1985) Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 229, 23-28 https://doi.org/10.1126/science.3892686
  4. Case, D. A., Darden, T. A., Cheatham III, T. E., Simmerling, C. L., Wang, J., Duke, R. E., Luo, R., Merz, K. M., Wang, B., Pearlman, D. A., Crowley, M., Brozell, S., Tsui, V., Gohlke, H., Mongan, J., Hornak, V., Cui, G., Beroza, P., Schafmeister, C., Caldwell, J. W., Ross, W. S. and Kollman, P. A. (2004) AMBER 8, University of California, San Francisco, USA
  5. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G. and Thompson, J. D. (2003) Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res. 31, 3497-3500 https://doi.org/10.1093/nar/gkg500
  6. Cohen, L., Karbat, I., Gilles, N., Froy, O., Corzo, G., Angelovici, R., Gordon, D. and Gurevitz, M. (2004) Dissection of functional surface of an anti-insect excitatory toxin illuminate a putative hot spot common to all scorpion ${\beta}$-toxins affecting $Na^+$ channels. J. Biol. Chem. 279, 8206-8211 https://doi.org/10.1074/jbc.M307531200
  7. Darbon, H., Jover, E., Couraud, F. and Rochat, H. (1983) Alphascorpion neurotoxin derivatives suitable as potential markers of sodium channels. Preparation and characterization. Int. J. Pept. Protein Res. 22, 179-186 https://doi.org/10.1111/j.1399-3011.1983.tb02084.x
  8. Darbon, H., Weber, C. and Braun, W. (1991) Two-dimensional $^1H$ nuclear magnetic resonance study of AaHIT, an anti-insect toxin from the scorpion Androctonus australis Hector. Sequential resonance assignments and folding of the polypeptide chain. Biochemistry 30, 1836-1845 https://doi.org/10.1021/bi00221a016
  9. De Lima, M. E., Martin-Eauclaire, M. F., Diniz, C. R. and Rochat, H. (1986) Tityus serrulatus toxin VII bears pharmacological properties of both beta-toxin and insect toxin from scorpion venoms. Biochem. Biophys. Res. Commun. 139, 296-302 https://doi.org/10.1016/S0006-291X(86)80112-7
  10. Fontecilla-Camps, J. C., Amassy, R. J., Suddath, F. L. and Bugg, C. E. (1982) The three-dimensional structure of scorpion neurotoxins. Toxicon 20, 1-7 https://doi.org/10.1016/0041-0101(82)90137-4
  11. Fontecilla-Camps, J. C., Almassy, R. J., Ealick, S. E., Suddath, F. L., Watt, D. D., Feldmann, R. J. and Bugg, C. E. (1981) Architecture of scorpion neurotoxins: A class of membranebinding proteins. Trends. Biochem. Sci. 6, 291-296 https://doi.org/10.1016/0968-0004(81)90105-5
  12. Fontecilla-Camps, J. C., Habersetzer-Rochat, C. and Rochat, H. (1988) Orthorhombic crystals and three-dimensional structure of the potent toxin II from the scorpion Androctonus australis Hector. Proc. Natl. Acad. Sci. USA 85, 7443-7447 https://doi.org/10.1073/pnas.85.20.7443
  13. Froy, O., Zilberberg, N., Gordon, D., Turkov, M., Gilles, N., Stankiewics, M., Pelhate, M., Loret, E., Oren, D. A., Shaanan, B. and Gurevitz, M. (1998) The putative bioactive surface of insect-selective scorpion excitatory neurotoxins. J. Biol. Chem. 274, 5769-5776 https://doi.org/10.1074/jbc.274.9.5769
  14. Gordon, D., Savarin, P., Gurevitz, M. and Zinn-Justin, S. (1998) Functional anatomy of scorpion toxins affecting sodium channels. J. Toxicol. Toxin Rev. 17, 131-159 https://doi.org/10.3109/15569549809009247
  15. Gordon, D., Moskowitz, H., Eitan, M., Warner, C., Catterall, W. A. and Zlotkin, E. (1992) Localization of receptor sites for insect-selective toxins on sodium channels by site-directed antibodies. Biochemistry 31, 7622-7628 https://doi.org/10.1021/bi00148a025
  16. Guex, N. and Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714-2723 https://doi.org/10.1002/elps.1150181505
  17. Gurevitz, M., Gordon, D., Ben-Natan, S., Turkov, M. and Froy, O. (2001) Diversification of neurotoxins by C-tail 'wiggling': a scorpion recipe for survival. FASEB 15, 1201-1205 https://doi.org/10.1096/fj.00-0571hyp
  18. Jover, E., Couraud, F. and Rochat, H. (1980) Two types of scorpion neurotoxins characterized by their binding to two separate receptor sites on rat brain synaptosomes. Biochem. Biophys. Res. Commun. 95, 1607-1614 https://doi.org/10.1016/S0006-291X(80)80082-9
  19. Karbat, I., Frolow, F., Froy, O., Gilles, N., Cohen, L., Turkov, M., Gordon, D. and Gurevitz, M. (2004) Molecular basis of the high insecticidal potency of scorpion ${\alpha}$-toxins. J. Biol. Chem. 279, 31679-31686 https://doi.org/10.1074/jbc.M402048200
  20. Koradi, R., Billeter, M. and Wüthrich, K. (1996) MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graphics 14, 51-55 https://doi.org/10.1016/0263-7855(96)00009-4
  21. Landon, C., Cornet, B., Bonmatin, J. M., Kopeyan, C., Rochat, H., Vovelle, F. and Ptak, M. (1996) 1H-NMR-derived secondary structure and the overall fold of the potent antimammal and anti-insect toxin III from the scorpion Leiurus quinquestriatus quinquestriatus. Eur. J. Biochem. 236, 395-404 https://doi.org/10.1111/j.1432-1033.1996.00395.x
  22. Landon, C., Sodano, P., Cornet, B., Bonmatin, J. M., Kopeyan, C., Rochat, H., Vovelle, F. and Ptak, M. (1997) Refined solution structure of the anti-mammal and anti-insect LqqIII scorpion toxin: comparison with other scorpion toxins. Proteins 28, 360- 374 https://doi.org/10.1002/(SICI)1097-0134(199707)28:3<360::AID-PROT6>3.0.CO;2-G
  23. MacKinnon, R., Cohen, S. L., Kuo, A., Lee, A. and Chait, B. T. (1998) Structural conservation in prokaryotic and eukaryotic potassium channels. Science 280, 106-109 https://doi.org/10.1126/science.280.5360.106
  24. Marti-Renom, M. A., Stuart, A., Fiser, A., Sánchez, R., Melo, F. and Sali, A. (2000) Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29, 291-325 https://doi.org/10.1146/annurev.biophys.29.1.291
  25. Oren, D. A., Froy, O., Amit, E., Kleinberger-Doron, N., Gurevitz, M. and Shaanan, B. (1998) An excitatory scorpion toxin with a distinctive feature: an additional ${\alpha}$-helix at the C-terminus and its implications for interaction with insect sodium channels. Structure 6, 1095-1103 https://doi.org/10.1016/S0969-2126(98)00111-7
  26. Pelhate, M. and Zlotkin, E. (1982) Actions of insect toxin and other toxins derived from the venom of the scorpion Androctonus australis on isolated giant axons of the cockroach (Periplaneta americana). J. Exp. Biol. 97, 67-77
  27. Pinheiro, C. B., Maragoni, S., Toyama, M. H. and Polikarpov, I. (2003) Structural analysis of Tityus serrulatus Ts1 neurotoxin at atomic resolution: insights into interactions with Na+ channels. Acta Cryst. 59, 405-415
  28. Polikarpov, I., Junior, M. S., Maragoni, S., Toyama, M. H. and Teplyakov, A. (1999) Crystal structure of neurotoxin Ts1 from Tityus serrulatus provides insights into the specificity and toxicity of scorpion toxins. J. Mol. Biol. 290, 175-184 https://doi.org/10.1006/jmbi.1999.2868
  29. Possani, L. D., Becerril, B., Delepierre, M. and Tytgat, J. (1999) Scorpion toxins specific for Na+ channel. Eur. J. Biochem. 264, 287-300 https://doi.org/10.1046/j.1432-1327.1999.00625.x
  30. Rochat, H., Rochat, C., Kopeyan, C., Miranda, F., Lissitzky, S. and Edman, P. (1970) Scorpion neurotoxins: A family of homologous proteins. FEBS Lett. 10, 349-351 https://doi.org/10.1016/0014-5793(70)80470-7
  31. Talebzadeh-Farooji, M., Amininasab, M., Elmi, M. M., Naderi- Manesh, H. and Sarbolouki, M. N. (2004) Solution structure of long neurotoxin NTX-1 from the venom of Naja naja oxiana by 2D-NMR spectroscopy. Eur. J. Biochem. 271, 4950-4957 https://doi.org/10.1111/j.1432-1033.2004.04465.x
  32. Zaki, T. I. and Maruniak, J. E. (2003) Three polymorphic genes encoding a depressant toxin from the Egyptian scorpion Leiurus quinquestriatus quinquestriatus. Toxicon 41, 109-113 https://doi.org/10.1016/S0041-0101(02)00242-8
  33. Zilberberg, N., Froy, O., Loret, E., Celeste, S., Arad, D., Gordon, D. and Gurevitz, M. (1997) Identification of structural elements of a scorpion ${\alpha}$-neurotoxin important for receptor site recognition. J. Biol. Chem. 272, 14810-14816 https://doi.org/10.1074/jbc.272.23.14810
  34. Zlotkin, E., Kadouri, D. and Gordon, D. (1985) An excitatory and a depressant insect toxin from scorpion venom both affect sodium conductance and possess a common binding site. Arch. Biochem. Biophys. 240, 877-887 https://doi.org/10.1016/0003-9861(85)90098-0
  35. Zlotkin, E. (1993) Insect selective neurotoxins from scorpion venoms affecting sodium conductance; in Toxins and Signal Transduction, Lazarowici, P. and Gutman, Y. (eds.), pp. 95-117, Harwood Press, Amesterdam, Netherland

Cited by

  1. Positively selected sites of scorpion depressant toxins: Possible roles in toxin functional divergence vol.51, pp.4, 2008, https://doi.org/10.1016/j.toxicon.2007.11.010