DOI QR코드

DOI QR Code

Yeast Elf1 Factor Is Phosphorylated and Interacts with Protein Kinase CK2

  • Kubinski, Konrad (Department of Molecular Biology, Environmental Protection Institute, John Paul II Catholic University of Lublin) ;
  • Zielinski, Rafal (Department of Molecular Biology, Environmental Protection Institute, John Paul II Catholic University of Lublin) ;
  • Hellman, Ulf (Ludwig Institute for Cancer Research) ;
  • Mazur, Elzbieta (Department of Molecular Biology, Environmental Protection Institute, John Paul II Catholic University of Lublin) ;
  • Szyszka, Ryszard (Department of Molecular Biology, Environmental Protection Institute, John Paul II Catholic University of Lublin)
  • Received : 2006.01.24
  • Accepted : 2006.02.28
  • Published : 2006.05.31

Abstract

One of the biggest group of proteins influenced by protein kinase CK2 is formed by factors engaged in gene expression. Here we have reported recently identified yeast transcription elongation factor Elf1 as a new substrate for both monomeric and tetrameric forms of CK2. Elf1 serves as a substrate for both the recombinant CK2$\alpha$' ($K_m$ 0.38 ${\mu}M$) and holoenzyme ($K_m$ $0.13\;{\mu}M$). By MALDI-MS we identified the two serine residues at positions 95 and 117 as the most probable in vitro phosphorylation sites. Co-immunoprecypitation experiments show that Elf1 interacts with catalytic ($\alpha$ and $\alpha$') as well as regulatory ($\beta$ and $\beta$') subunits of CK2. These data may help to elucidate the role of protein kinase CK2 and Elf1 in the regulation of transcription elongation.

Keywords

References

  1. Bergholts, S., Andersen, T. O., Andersson, K. B., Borrebaek, J., Lusher, B. and Gabrielsen, O. S. (2001) The highly conserved DNA-binding domains of A-, B- and c-Myb differ with respect to DNA-binding, phosphorylation and redox properties. Nucleic Acids Res. 29, 3546-3556 https://doi.org/10.1093/nar/29.17.3546
  2. Boldyreff, B., Mietens, U. and Issinger O.-G. (1996) Structure of protein kinase CK2: dimerization of the human beta-subunit. FEBS Lett. 379, 153-156 https://doi.org/10.1016/0014-5793(95)01497-7
  3. Channavajhala, P. and Seldin, D. C. (2002) Functional interaction of protein kinase CK2 and c-Myc in lymphomagenesis. Oncogene 21, 5280-5288 https://doi.org/10.1038/sj.onc.1205640
  4. Chantalat, L., Leroy, D., Filhol, O., Nueda, A., Benitez, M. J., Chambaz, E. M., Cochet, C. and Dideberg, O. (1999) Crystal structure of the human protein kinase CK2 regulatory subunit reveals its zinc finger-mediated dimerization. EMBO J. 18, 2930-2940 https://doi.org/10.1093/emboj/18.11.2930
  5. Conde, R., Xavier, J., McLoughlin, C., Chinkers, M. and Ovsenek, N. (2005) Protein phosphatase 5 is a negative modulator of heat shock factor 1. J Biol. Chem. 280, 28989-28996 https://doi.org/10.1074/jbc.M503594200
  6. Domanska, K., Zieliñski, R., Kubinski, K., Sajnaga, E., Masyk, M., Bretner, M. and Szyszka, R. (2005) Different properties of four molecular forms of protein kinase CK2 from Saccharomyces cerevisiae. Acta Biochim. Polon. 52, 947-951
  7. Dunn, C., Wiltshire, C., MacLaren, A. and Gillespie, D. A. (2002) Molecular mechanism and biological functions of c-Jun Nterminal kinase signalling via the c-Jun transcription factor. Cell Signal. 14, 585-593 https://doi.org/10.1016/S0898-6568(01)00275-3
  8. Fuchs, S. Y., Tappin, I. and Ronai Z. (2000) Stability of the ATF2 transcription factor is regulated by phosphorylation and dephosphorylation. J. Biol. Chem. 275, 12560-12564 https://doi.org/10.1074/jbc.275.17.12560
  9. Glover, C. V. C. (1998) On the physiological role of casein kinase II in Saccharomyces cerevisiae. Prog. Nucl. Acid Res. Mol. Biol. 59, 95-133
  10. Gonzalez, G. A. and Montminy, M. R. (1989) Cyclic AMP stimulates somatostatin gene ranscription by phosphorylation of CREB at serine 133. Cell 59, 675-680 https://doi.org/10.1016/0092-8674(89)90013-5
  11. Gotz, C., Kartarius, S., Scholtes, P., Nastainczyk, W. and Montenarh M. (1999) Identification of a CK2 phosphorylation site in mdm2. Eur. J. Biochem. 266, 493-501 https://doi.org/10.1046/j.1432-1327.1999.00882.x
  12. Hashikawa, N. and Sakurai, H. (2004) Phosphorylation of the yeast heat shock transcription factor is implicated in genespecific activation dependent on the architecture of the heat shock element. Mol. Cell. Biol. 24, 3648-3659 https://doi.org/10.1128/MCB.24.9.3648-3659.2004
  13. Hellman, U. (2000) Sample preparation by SDS/PAGE and in-gel digestion. EXS 88, 43-54
  14. Holmberg, C. I., Tran, S. E. F., Eriksson, J. E. and Sistonen, L. (2002) Multisite phosphorylation provides sophistical regulation of transcription factors. TRENDS in Biochem. Sci. 27, 619-626 https://doi.org/10.1016/S0968-0004(02)02207-7
  15. Hunter, T. (2000) Signaling - 2000 and beyond. Cell 100, 113-127 https://doi.org/10.1016/S0092-8674(00)81688-8
  16. Hurley, J. H., Dean, A. H., Sohl, J. L., Koshland, D. E. and Strand, R. M. (1990) Regulation of an enzyme by phosphorylation at the active site. Science 249, 1012-1016 https://doi.org/10.1126/science.2204109
  17. Kisseleva, T., Bhattacharya, S., Braunstein, J. and Schindler, C. W. (2002) Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285, 1-24 https://doi.org/10.1016/S0378-1119(02)00398-0
  18. Kushner, D. B., Lindenbach, B. D., Grdzelishvili, V. Z. Noueiry, A. O., Paul, S. M. and Ahlquist, P. (2003) Systematic, genomewide identification of host genes affecting replication of a positive-strand RNA virus. Proc. Natl. Acad. Sci. USA 100, 15764-15769 https://doi.org/10.1073/pnas.2536857100
  19. Litchfield, D. W. (2003) Protein kinase: structure, regulation and role in cellular decisions of life and death. Biochem. J. 369, 1- 15 https://doi.org/10.1042/BJ20021469
  20. Lodie, T. A., Reiner, M., Coniglio, S., Viglianti, G. and Fenton, M. J. (1998) Both PU.1 and nuclear factor-kappa B mediate lipopolysaccharide- induced HIV-1 long terminal repeat transcription in macrophages. J. Immunol. 161, 268-276
  21. Lozeman, F. J., Litchfield, D. W., Piening, C., Takio, K., Walsh, K. A. and Krebs, E. G. (1990) Isolation and characterization of human cDNA clones encoding the alpha and the alpha' subunits of casein kinase II. Biochemistry 29, 8436-8447 https://doi.org/10.1021/bi00488a034
  22. Marin, O., Meggio, F., Sarno, S., Cesaro, L., Pagano, M. A. and Pinna, L. A. (1999) Tyrosine versus serine/threonine phosphorylation by protein kinase casein kinase-2. A study with peptide substrates derived from immunophilin Fpr3. J. Biol. Chem. 274, 29260-29265 https://doi.org/10.1074/jbc.274.41.29260
  23. Mayr, B. and Montminy, M. R. (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell. Biol. 2, 599-609 https://doi.org/10.1038/35085068
  24. McKendrick, L., Milne, D. and Meek D. (1999) Protein kinase CK2-dependent regulation of p53 function: evidence that the phosphorylation status of the serine 386 (CK2) site of p53 is constitutive and stable. Mol. Cell. Biochem. 191, 187-199 https://doi.org/10.1023/A:1006854109926
  25. Meggio, F., Boldyreff, B., Issinger, O.-G. and Pinna, L. A. (1994) Casein kinase-2 down-regulation and activation by polybasic peptides are mediated by acidic residues in the 55-64 region of the b-subunit. A study with the calmodulin as phosphorylable substrate. Biochemistry 33, 4336-4342 https://doi.org/10.1021/bi00180a030
  26. Meggio, F., Marin, O. and Pinna L. A. (1994) Substrate specificity of protein kinase CK2. Cell. Mol. Biol. Res. 40, 401-409
  27. Meggio, F. and Pinna, L. A. (2003) One-thousand-and-one substrates of protein kinase CK2. FASEB J. 17, 349-368 https://doi.org/10.1096/fj.02-0473rev
  28. Nigg, E. A., Bauerle, P. A. and Luhrmann, R. (1991) Nuclear import-export: in search of signals and mechanisms. Cell 66, 15-22 https://doi.org/10.1016/0092-8674(91)90135-L
  29. Pawson, T. and Nash, T. (2000) Protein-protein interactions define specificity in signal transduction. Genes Dev. 14, 1027-1047
  30. Pinna, L. A. (2002) Protein kinase CK2: a challenge to canons. J. Cell. Sci. 115, 3873-3878 https://doi.org/10.1242/jcs.00074
  31. Pinna, L. A. and Meggio, F. (1997) Protein kinase CK2 (,casein kinase-2') and its implication in cell division and proliferation. Prog. Cell Cycle Res. 3, 77-97
  32. Pinna, L. A., Meggio, F. and Sarno, S. (1995) Casein kinase-2 and cell signaling; in Biochemistry of cell membranes, Papa, S. and Tager, T. M. (eds.) pp. 15-27, Birkhauser Verlag Basel, Switzerland
  33. Prether, D., Krogan, N. J., Emili, E., Greenblatt, J. F. and Winston, F. (2005) Identification and characterization of Elf1, a conserved transcription elongation factor in Saccharomyces cerevisiae. Mol. Cell. Biol. 25, 10122-10135 https://doi.org/10.1128/MCB.25.22.10122-10135.2005
  34. Rondon, A. G., Garcia-Rubio, M., Gonzalez-Barrere, S. and Aguilera, A. (2003) Molecular evidence for a positive role of Spt4 in transcription elongation. EMBO J. 22, 612-620 https://doi.org/10.1093/emboj/cdg047
  35. Saeki, K., You, A. and Takaku, F. (1999) Cell-cycle-regulated phosphorylation of cAMP response element-binding protein: identification of novel phosphorylation sites. Biochem. J. 338, 49-54 https://doi.org/10.1042/0264-6021:3380049
  36. Shen, T., Zong, C., Hamelberg, D., McCammon, J. A. and Wolynes, P. G. (2005) The folding energy landscape and phosphorylation: modeling the conformational switch of the NFAT regulatory domain. FASEB J. 19, 1389-1395 https://doi.org/10.1096/fj.04-3590hyp
  37. Shi, X., Potvin, B., Huang, T., Hilgard, P., Spray, D. C., Suadicani, S. O., Wolkoff, A. W., Stanley, P. and Stockert, R. J. (2001) A novel casein kinase 2 alpha-subunit regulates membrane protein traffic in the human hepatoma cell line HuH-7. J. Biol. Chem. 276, 2075-2082 https://doi.org/10.1074/jbc.M008583200
  38. Skjerpen, C. S., Nilsen, T., Wesche, J. and Olsens, S. (2002) Binding of FGF-1variants to protein kinase CK2 correlates with mitogenicity. EMBO J. 21, 4058-4069 https://doi.org/10.1093/emboj/cdf402
  39. Song, A., Wang, Q., Goebl, M. G. and Harrington M. A. (1999) Phosphorylation of nuclear MyoD is required for its rapid degradation. Mol. Cell. Biol. 18, 4994-4999
  40. Suttitanamongkol, S., Polanowska-Grabowska, R. and Gear A. R. (2002) Heat-shock protein 90 complexes in resting and thrombin activated platelets. Biochem. Biophys. Res. Commun. 297, 129-133 https://doi.org/10.1016/S0006-291X(02)02138-1
  41. Szyszka, R., Lopaczynski, W., Gaasinski, W., Grankowski, N. and Gsior, E. (1986) Further studies on the quaternary structure of yeast casein kinase II. Acta Biochim. Polon. 23, 39-46
  42. Vandel, L. and Kouzarides, T. (1999) Residues phosphorylated by TFIIH are required for E2F-1 degradation during S-phase. EMBO J. 18, 4280-4291 https://doi.org/10.1093/emboj/18.15.4280
  43. Wagner, B. L., Bauer, A., Schultz, G. and Montminy, M. (2000) Stimulus-specific interaction between activator-coactivator cognates revealed with a novel complex-specific antiserum. J. Biol. Chem. 275, 8263-8266 https://doi.org/10.1074/jbc.275.12.8263
  44. Westmark, C. J., Ghose, R. and Huber, P. W. (2002) Phosphorylation of Xenopus transcription factor IIIA by an oocyte protein kinase CK2. Biochem. J. 362, 375-382 https://doi.org/10.1042/0264-6021:3620375
  45. Whitmarsh, A. J. and Davis, R. J. (2000) Regulation of transcription factor function by phosphorylation. Cell Mol. Life Sci. 57, 1172-1183 https://doi.org/10.1007/PL00000757
  46. Wilson, L. K., Dhillon, N., Thorner, J. and Martin G. S. (1997) Casein kinase II catalyzes tyrosine phosphorylation of the yeast nucleolar immunophilin Fpr3. J. Biol. Chem. 272, 12961- 12967 https://doi.org/10.1074/jbc.272.20.12961
  47. Vandel, L. and Kouzarides, T. (1999) Residues phosphorylated by TFIIH are required for E2F-1 degradation during S-phase. EMBO J. 18, 4280-4291 https://doi.org/10.1093/emboj/18.15.4280
  48. Zielinski, R., Hellman, U., Kubinski, K. and Szyszka, R. (2006) Fip1 - an essential component of the Saccharomyces cerevisiae polyadenylation machinery is phosophorylated by protein kinase CK2. Molec. Cell. Biochem. 282, 1-7 https://doi.org/10.1007/s11010-006-1089-0

Cited by

  1. Interactions between subunits of protein kinase CK2 and their protein substrates influences its sensitivity to specific inhibitors vol.356, pp.1-2, 2011, https://doi.org/10.1007/s11010-011-0951-x
  2. Reduced tillering in Basmati rice T-DNA insertional mutant OsTEF1 associates with differential expression of stress related genes and transcription factors vol.12, pp.2, 2012, https://doi.org/10.1007/s10142-012-0264-5