DOI QR코드

DOI QR Code

The Potato Transcriptional Co-activator StMBF1 Is Up-regulated in Response to Oxidative Stress and Interacts with the TATA-box Binding Protein

  • Arce, Debora Pamela (Instituto de Investigaciones Biologicas, FCEyN, UNMDP) ;
  • Tonon, Claudia (Instituto de Investigaciones Biologicas, FCEyN, UNMDP) ;
  • Zanetti, Maria Eugenia (Department of Botany and Plant Sciences and Center for Plant Cell Biology. University of California) ;
  • Godoy, Andrea Veronica (Instituto de Investigaciones Biologicas, FCEyN, UNMDP) ;
  • Hirose, Susumu (Department of Developmental Genetics, National Institute of Genetics and Department of Genetics, Graduate University for Advanced Studies) ;
  • Casalongue, Claudia Anahi (Instituto de Investigaciones Biologicas, FCEyN, UNMDP)
  • Received : 2005.11.11
  • Accepted : 2006.01.23
  • Published : 2006.07.31

Abstract

To gain a better understanding on the function of the potato Solanum tuberosum Multiprotein Bridging Factor 1 protein (StMBF1) its interaction with the TATA box binding protein (TBP) was demonstrated. In addition we reported that StMBF1 rescues the yeast mbf1 mutant phenotype, indicating its role as a plant co-activator. These data reinforce the hypothesis that MBF1 function is also conserved among non closely related plant species. In addition, measurement of StMBF1 protein level by Western blot using anti-StMBF1 antibodies indicated that the protein level increased upon $H_2O_2$ and heat shock treatments. However, the potato $\beta$-1,3-glucanase protein level was not changed under the same experimental conditions. These data indicate that StMBF1 participates in the cell stress response against oxidative stress allowing us to suggest that MBF1 genes from different plant groups may share similar functions.

Keywords

References

  1. Banzet, N., Richaud, C., Deveraux, Y., Kazmier, M. and Gagnon, J. (1998) Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptative response in tomato cells. Plant J. 13, 519-527 https://doi.org/10.1046/j.1365-313X.1998.00056.x
  2. Brendel, C., Gelman, L. and Auwerx, J. (2002) Multiprotein bridging factor-1 (MBF-1) is a cofactor for nuclear receptors that regulate lipid metabolism. Mol. Endocrinol. 16, 1367-1377 https://doi.org/10.1210/me.16.6.1367
  3. Busk, P., Wulf-Andersen, L., Strom, C., Enevoldsen, M., Thirstrup, K., Haunso, S. and Sheikh, S. (2003) Multiprotein bridging factor 1 cooperates with c-jun and is neccesary for cardiac hypertrophy in vitro. Exp. Cell. Res. 286, 102-114 https://doi.org/10.1016/S0014-4827(03)00091-0
  4. Dat, J. F., Foyer, C. H. and Scott, I. M. (1998) Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol. 118, 1455-1461 https://doi.org/10.1104/pp.118.4.1455
  5. Godoy, A.V., Zanetti, M. E., San Segundo, B., Casalongué, C. A. (2001) Identification of a putative Solanum tuberosum transcriptional coactivator up-regulated in potato tubers by Fusarium solani f. sp. eumartii infection and wounding. Physiol. Plant. 112, 217-222 https://doi.org/10.1034/j.1399-3054.2001.1120210.x
  6. Harlow, E. and Lane D. (1988) Antibodies. A laboratory manual. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, USA
  7. Jindra, M.G. I., Uhlirova, M., Okabe, M., Hiromi, Y. and Hirose, S. (2004) Coactivator MBF1 preserves the redox-dependent AP-1 activity during oxidative stress in Drosophila. EMBO. J. 23, 3538-3547 https://doi.org/10.1038/sj.emboj.7600356
  8. Kabe, Y., Goto, M., Shima, D., Imai, T., Wada, T., Morohashi, K., Shirakawa, M., Hirose, S. and Handa, H. (1999) The role of human MBF1 as a transcriptional coactivator. J. Biol. Chem. 274, 34196-34202 https://doi.org/10.1074/jbc.274.48.34196
  9. Lee, G. H. and Vierling, E. (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatures protein. FASEB J. 13, 833-842
  10. Li, F. Q., Ueda, H. and Hirose, S. (1994) Mediators of activation of fushi tarazu gene transcription by BmFTZ-F1. Mol. Cell. Biol. 14, 3013-3021 https://doi.org/10.1128/MCB.14.5.3013
  11. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissues cultures. Physiol. Plant. 15, 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  12. Pugh, B. F. (2000) Control of gene expression through regulation of the TATA-binding protein. Gene 255, 1-14 https://doi.org/10.1016/S0378-1119(00)00288-2
  13. Schett, G., Steiner, C. W., Groger, M., Winkler, S., Graninger, W., Smolen, J., Xu, Q. and Steiner, G. (1999) Activation of Fas inhibits heat induced activation of HSF1 and up-regulation of HSP70. FASEB J. 13, 833-842 https://doi.org/10.1096/fasebj.13.8.833
  14. Suzuki, N., Rizhsky, L., Liang, H., Shuman, J., Shulaev, V. and Mittler, R. (2005) Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c. Plant Physiol. 139, 1313-1322 https://doi.org/10.1104/pp.105.070110
  15. Swaffield, J. C. and Johnston, S. A. (1996) Affinity purification of proteins binding to GST fusion proteins. Curr. Prot. Mol. Biol. John Wiley and Sons, Inc., USA
  16. Takemaru, K., Harashima, S., Ueda, H. and Hirose, S. (1998) Yeast coactivator MBF1 mediates GCN4-dependent transcriptional activation. Mol. Cell. Biol. 18, 4971-4976 https://doi.org/10.1128/MCB.18.9.4971
  17. Takemaru, K., Li, F. Q., Ueda, H. and Hirose, S. (1997) Multiprotein bridging factor 1 (MBF1) is an evolutionarily conserved transcriptional coactivator that connects a regulatory factor and TATA element-binding protein. Proc. Natl. Acad Sci. USA 94, 7251-7256 https://doi.org/10.1073/pnas.94.14.7251
  18. Tonón, C., Daleo, G. and Oliva, O. (2001) An acidic b-1,3 glucanase from potato tubers appears to be patatin. Plant Physiol. Biochem. 39, 849-854 https://doi.org/10.1016/S0981-9428(01)01311-0
  19. Tonón, C., Guevara, G., Oliva, C. and Daleo, G. (2002) Isolation of a potato acidic 39 kDa b-1,3 glucanase with antifungal activity against Phytophthora infestans and analysis of its expression in potato cultivars differing in their degrees of field resistance. J. Phytopatol. 150, 189-195 https://doi.org/10.1046/j.1439-0434.2002.00729.x
  20. Tsuda, K., Tsuji, T., Hirose, S. and Yamazaki, K. (2004) Three Arabidopsis MBF1 homologs with distinct expression profiles play roles as transcriptional co-activators. Plant Cell Physiol. 45, 225-231 https://doi.org/10.1093/pcp/pch017
  21. Tsuda, K. and Yamazaki, K. (2004) Structure and expression analysis of three subtypes of Arabidopsis MBF1 genes. Biochim. Biophys. Acta 1680, 1-10 https://doi.org/10.1016/j.bbaexp.2004.08.004
  22. Yano, A., Suzuki K., Uchimiya, H. and Shinshi, H. (1998) Induction of Hypersensitive Cell Death by a Fungal Protein in Cultures of Tobacco Cells. Mol. Plant Microbe Interaction 11, 115-123 https://doi.org/10.1094/MPMI.1998.11.2.115
  23. Zanetti, M. E., Blanco, F. A., Daleo, G. R. and Casalongue, C. A (2003) Phosphorylation of a member of the MBF1 transcriptional co-activator family, StMBF1, is stimulated in potato cell suspensions upon fungal elicitor challenge. J. Exp. Bot. 54, 623-632 https://doi.org/10.1093/jxb/erg061
  24. Zanetti, M. E., Chan, R. L., Godoy, A. V., Gonzalez, D. H. and Casalongué, C. A. (2004) Homeodomain-leucine zipper proteins interact with a plant homologue of the transcriptional co-activator multiprotein bridging factor 1. J. Biochem. Mol. Biol. 37, 320-324 https://doi.org/10.5483/BMBRep.2004.37.3.320
  25. Zhu, G., La Gier, M. J., Hirose, S. and Keithly, J. S. (2000) Cryptosporidium parvum: functional complementation of a parasite transcriptional coactivator CpMBF1 in yeast. Exp. Parasitol. 96, 195-201 https://doi.org/10.1006/expr.2000.4574

Cited by

  1. The grape VvMBF1 gene improves drought stress tolerance in transgenic Arabidopsis thaliana vol.118, pp.3, 2014, https://doi.org/10.1007/s11240-014-0508-2
  2. The analysis of an Arabidopsis triple knock-down mutant reveals functions for MBF1 genes under oxidative stress conditions vol.167, pp.3, 2010, https://doi.org/10.1016/j.jplph.2009.09.003
  3. Human multiprotein bridging factor 1 and Calmodulin do not interact in vitro as confirmed by NMR spectroscopy and CaM-agarose affinity chromatography vol.80, pp.1, 2011, https://doi.org/10.1016/j.pep.2011.07.001
  4. Antarctic Moss Multiprotein Bridging Factor 1c Overexpression in Arabidopsis Resulted in Enhanced Tolerance to Salt Stress vol.8, 2017, https://doi.org/10.3389/fpls.2017.01206
  5. Reduced tolerance to abiotic stress in transgenic Arabidopsis overexpressing a Capsicum annuum multiprotein bridging factor 1 vol.14, pp.1, 2014, https://doi.org/10.1186/1471-2229-14-138
  6. Over-expression of a chimeric gene of the transcriptional co-activator MBF1 fused to the EAR repressor motif causes developmental alteration in Arabidopsis and tomato vol.175, pp.1-2, 2008, https://doi.org/10.1016/j.plantsci.2008.01.019
  7. Honey can repairing damage of liver tissue due to protein energy malnutrition through induction of endogenous stem cells vol.10, pp.6, 2017, https://doi.org/10.14202/vetworld.2017.711-715