DOI QR코드

DOI QR Code

Insulin Resistance Does Not Influence Gene Expression in Skeletal Muscle

  • Nguyen, Lisa L. (School of Molecular and Microbial Biosciences, University of Sydney) ;
  • Kriketos, Adamandia D. (Diabetes and Obesity Research Program, Garvan Institute of Medical Research) ;
  • Hancock, Dale P. (School of Molecular and Microbial Biosciences, University of Sydney) ;
  • Caterson, Ian D. (School of Molecular and Microbial Biosciences, University of Sydney) ;
  • Denyer, Gareth S. (School of Molecular and Microbial Biosciences, University of Sydney)
  • Received : 2006.02.21
  • Accepted : 2006.05.30
  • Published : 2006.07.31

Abstract

Insulin resistance is commonly observed in patients prior to the development of type 2 diabetes and may predict the onset of the disease. We tested the hypothesis that impairment in insulin stimulated glucose-disposal in insulin resistant patients would be reflected in the gene expression profile of skeletal muscle. We performed gene expression profiling on skeletal muscle of insulin resistant and insulin sensitive subjects using microarrays. Microarray analysis of 19,000 genes in skeletal muscle did not display a significant difference between insulin resistant and insulin sensitive muscle. This was confirmed with real-time PCR. Our results suggest that insulin resistance is not reflected by changes in the gene expression profile in skeletal muscle.

Keywords

References

  1. Bao, S., Kennedy, A., Wojciechowski, B., Wallace, P., Ganaway, E. and Garvey, W. T. (1998) Expression of mRNAs encoding uncoupling proteins in human skeletal muscle: effects of obesity and diabetes. Diabetes 47, 1935-1940 https://doi.org/10.2337/diabetes.47.12.1935
  2. Bergstrom, J. (1962) Muscle electrolytes in man. Scand. J. Clin. Lab. Investi. 14, 1-100 https://doi.org/10.3109/00365516209075148
  3. Brozinick, J. T., Jr., Roberts, B. R. and Dohm, G. L. (2003) Defective signaling through Akt-2 and -3 but not Akt-1 in insulin-resistant human skeletal muscle: potential role in insulin resistance. Diabetes 52, 935-941 https://doi.org/10.2337/diabetes.52.4.935
  4. Carey, D. G., Jenkins, A. B., Campbell, L. V., Freund, J. and Chisholm, D. J. (1996) Abdominal fat and insulin resistance in normal and overweight women: Direct measurements reveal a strong relationship in subjects at both low and high risk of NIDDM. Diabetes 45, 633-638 https://doi.org/10.2337/diabetes.45.5.633
  5. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. and Rutter, W. J. (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294-5299 https://doi.org/10.1021/bi00591a005
  6. Cusi, K., Maezono, K., Osman, A., Pendergrass, M., Patti, M. E., Pratipanawatr, T., DeFronzo, R. A., Kahn, C. R. and Mandarino, L. J. (2000) Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J. Clin. Invest. 105, 311-320 https://doi.org/10.1172/JCI7535
  7. Dandona, P., Aljada, A. and Bandyopadhyay, A. (2004) Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol. 25, 4-7 https://doi.org/10.1016/j.it.2003.10.013
  8. DeFronzo, R. A., Tobin, J. D. and Andres, R. (1979) Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am. J. Physiol. 237, 214-223
  9. Felber, J. P. and Golay, A. (2002) Pathways from obesity to diabetes. Int. J. Obes. Relat. Metab. Disord. 26, 39-45 https://doi.org/10.1038/sj.ijo.0802126
  10. Goldstein, B. J. (2002) Insulin resistance as the core defect in type 2 diabetes mellitus. Am. J. Cardiol. 90, 3-10
  11. Goldstein, B. J. (2003) Insulin resistance: from benign to type 2 diabetes mellitus. Rev. Cardiovasc. Med. 4, 3-10
  12. Haffner, S. M. (2003a) Insulin resistance, inflammation, and the prediabetic state. Am. J. Cardiol. 92, 18-26
  13. Haffner, S. M. (2003b) Pre-diabetes, insulin resistance, inflammation and CVD risk. Diabetes Res. Clin. Pract. 61, 9-18 https://doi.org/10.1016/S0168-8227(03)00122-0
  14. Hojlund, K., Staehr, P., Hansen, B. F., Green, K. A., Hardie, D. G., Richter, E. A., Beck-Nielsen, H. and Wojtaszewski, J. F. (2003) Increased phosphorylation of skeletal muscle glycogen synthase at NH2-terminal sites during physiological hyperinsulinemia in type 2 diabetes. Diabetes 52, 1393-1402 https://doi.org/10.2337/diabetes.52.6.1393
  15. Kahn, B. B. and Flier, J. S. (2000) Obesity and insulin resistance. J. Clin. Invest. 106, 473-481 https://doi.org/10.1172/JCI10842
  16. Kopelman, P. G. (2000) Obesity as a medical problem. Nature 404, 635-643 https://doi.org/10.1038/35007508
  17. Lal, S., Lui, R., Nguyen, L., Macdonald, P., Denyer, G. and dos Remedios, C. (2004) Increases in leukocyte cluster of differentiation antigen expression during cardiopulmonary bypass in patients undergoing heart transplantation. Proteomics 4, 1918-1926 https://doi.org/10.1002/pmic.200300756
  18. Lehrach, H., Diamond, D., Wozney, J. M. and Boedtker, H. (1977) RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry 16, 4743-4751 https://doi.org/10.1021/bi00640a033
  19. Machann, J., Haring, H., Schick, F. and Stumvoll, M. (2004) Intramyocellular lipids and insulin resistance. Diabetes Obes. Metab. 6, 239-248 https://doi.org/10.1111/j.1462-8902.2004.00339.x
  20. Mulligan, C., Rochford, J., Denyer, G., Stephens, R., Yeo, G., Freeman, T., Siddle, K. and O'Rahilly, S. (2002) Microarray analysis of insulin and insulin-like growth factor-1 (IGF-1) receptor signaling reveals the selective up-regulation of the mitogen heparin-binding EGF-like growth factor by IGF-1. J. Biol. Chem. 277, 42480-42487 https://doi.org/10.1074/jbc.M206206200
  21. Permana, P. A., Del Parigi, A. and Tataranni, P. A. (2004) Microarray gene expression profiling in obesity and insulin resistance. Nutrition 20, 134-138 https://doi.org/10.1016/j.nut.2003.09.023
  22. Petersen, K. F. and Shulman, G. I. (2002) Pathogenesis of skeletal muscle insulin resistance in type 2 diabetes mellitus. Am. J. Cardiol. 90, 11-18
  23. Smith, U. (2002) Impaired ('diabetic') insulin signaling and action occur in fat cells long before glucose intolerance--is insulin resistance initiated in the adipose tissue? Int. J. Obes. Relat. Metab. Disord 26, 897-904 https://doi.org/10.1038/sj.ijo.0802028
  24. Sowers, J. R. (2004) Insulin resistance and hypertension. Am. J. Physiol. Heart Circ. Physiol. 286, 1597-1602 https://doi.org/10.1152/ajpheart.00026.2004
  25. Sreekumar, R., Halvatsiotis, P., Schimke, J. C. and Nair, K. S. (2002) Gene expression profile in skeletal muscle of type 2 diabetes and the effect of insulin treatment. Diabetes 51, 1913-1920 https://doi.org/10.2337/diabetes.51.6.1913
  26. Storgaard, H., Song, X. M., Jensen, C. B., Madsbad, S., Bjornholm, M., Vaag, A. and Zierath, J. R. (2001) Insulin signal transduction in skeletal muscle from glucose-intolerant relatives of type 2 diabetic patients. Diabetes 50, 2770-2778 https://doi.org/10.2337/diabetes.50.12.2770
  27. Thompson, D. B., de Gregorio, M. and Sommercorn, J. (1996) Insulin regulation of multiple ribonucleic acid species in human skeletal muscle in insulin-sensitive and insulin-resistant subjects. J. Clin. Endocrinol. Metab. 81, 519-523 https://doi.org/10.1210/jc.81.2.519
  28. Yang, X., Pratley, R. E., Tokraks, S., Bogardus, C. and Permana, P. A. (2002) Microarray profiling of skeletal muscle tissues from equally obese, non-diabetic insulin-sensitive and insulinresistant Pima Indians. Diabetologia 45, 1584-1593 https://doi.org/10.1007/s00125-002-0905-7
  29. Yki-Jarvinen, H. (1995) Role of insulin resistance in the pathogenesis of NIDDM. Diabetologia 38, 1378-1388 https://doi.org/10.1007/BF00400597
  30. Zierath, J. R. and Wallberg-Henriksson, H. (2002) From receptor to effector: insulin signal transduction in skeletal muscle from type II diabetic patients. Ann. N. Y. Acad. Sci. 967, 120-134 https://doi.org/10.1111/j.1749-6632.2002.tb04270.x

Cited by

  1. The Ups and Downs of Insulin Resistance and Type 2 Diabetes: Lessons from Genomic Analyses in Humans vol.7, pp.1, 2013, https://doi.org/10.1007/s12170-012-0283-8
  2. Module Based Differential Coexpression Analysis Method for Type 2 Diabetes vol.2015, 2015, https://doi.org/10.1155/2015/836929
  3. Insulin resistance at the crossroads of metabolic syndrome: Systemic analysis using microarrays vol.5, pp.9, 2010, https://doi.org/10.1002/biot.201000048
  4. Microarray Evidences the Role of Pathologic Adipose Tissue in Insulin Resistance and Their Clinical Implications vol.2011, 2011, https://doi.org/10.1155/2011/587495
  5. DNA Microarray Analysis of Type 2 Diabetes-Related Genes Co-regulated between White Blood Cells and Livers of Diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) Rats vol.30, pp.4, 2007, https://doi.org/10.1248/bpb.30.763