DOI QR코드

DOI QR Code

Differential Roles of Vascular Endothelial Growth Factor Receptor-1 and Receptor-2 in Angiogenesis

  • Shibuya, Masabumi (Division of Genetics, Institute of Medical Science, University of Tokyo)
  • Accepted : 2006.07.11
  • Published : 2006.09.30

Abstract

Vascular endothelial growth factor (VEGF)-A, a major regulator for angiogenesis, binds and activates two tyrosine kinase receptors, VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). These receptors regulate physiological as well as pathological angiogenesis. VEGFR2 has strong tyrosine kinase activity, and transduces the major signals for angiogenesis. However, unlike other representative tyrosine kinase receptors which use the Ras pathway, VEGFR2 mostly uses the Phospholipase-$C{\gamma}$-Protein kinase-C pathway to activate MAP-kinase and DNA synthesis. VEGFR2 is a direct signal transducer for pathological angiogenesis including cancer and diabetic retinopathy, thus, VEGFR2 itself and the signaling appear to be critical targets for the suppression of these diseases. VEGFR1 plays dual role, a negative role in angiogenesis in the embryo most likely by trapping VEGF-A, and a positive role in adulthood in a tyrosine kinase-dependent manner. VEGFR1 is expressed not only in endothelial cells but also in macrophage-lineage cells, and promotes tumor growth, metastasis, and inflammation. Furthermore, a soluble form of VEGFR1 was found to be present at abnormally high levels in the serum of preeclampsia patients, and induces proteinurea and renal dysfunction. Therefore, VEGFR1 is also an important target in the treatment of human diseases. Recently, the VEGFR2-specific ligand VEGF-E (Orf-VEGF) was extensively characterized. Interestingly, the activation of VEGFR2 via VEGF-E in vivo results in a strong angiogenic response in mice with minor side effects such as inflammation compared with VEGF-A, suggesting VEGF-E to be a novel material for pro-angiogenic therapy.

Keywords

References

  1. Alitalo, K. and Carmeliet, P. (2002) Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1, 219-227. https://doi.org/10.1016/S1535-6108(02)00051-X
  2. Asahara, T., Masuda, H., Takahashi, T., Kalka, C., Pastore, C., Silver, M., Kearne, M., Magner, M. and Isner, J. M. (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 85, 221-228. https://doi.org/10.1161/01.RES.85.3.221
  3. Barleon, B., Sozzani, S., Zhou, D., Weich, H. A., Mantovani, A. and Marme, D. (1996) Migration of human monocytes in response to Vascular Endothelilal Growth Factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87, 3336-3343.
  4. Carmellet, P., Ferreira, V., Breier, G., Pollefeyt, S, Kleckens, L., Gertsenstein, M., Fahrig, M., Vandenhoeck, A., Harpal, K., Eberhardt, C., Declercq, C., Pawlling, J., Moons, L., Collen, D., Risau, W. and Nagy, A. (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435-439. https://doi.org/10.1038/380435a0
  5. Carmeliet, P., Moons, L., Luttun, A., Vincenti, V., Compernolle, V., et al., (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat. Med. 7, 575-583. https://doi.org/10.1038/87904
  6. Cho, N. K., Keyes, L., Johnson, E., Heller, J., Ryner, L., Karim, F. and Krasnow, M. A. (2002) Developmental control of blood cell migration by the Drosophila VEGF pathway. Cell 108, 865-876. https://doi.org/10.1016/S0092-8674(02)00676-1
  7. Breier, G., Knies, U., Rockl, W., Waltenberger, J., and Risau, W. (1996) The vascular endothelial growth factor receptor Flt-1 madiates biological activities. J. Biol. Chem. 271, 17629-17634. https://doi.org/10.1074/jbc.271.30.17629
  8. Cunningham, S. A., Waxham, M. N., Arrate, P. M. and Brock, T. A. (1995) Interaction of the Flt-1 tyrosine kinase receptor with the p85 subunit of phosphatidylinositol 3-kinase. J. Biol. Chem. 270, 20254-20257. https://doi.org/10.1074/jbc.270.35.20254
  9. Bandt, M. D., Mahdi, M. H., Ollivier, V., Grossin, M., Dupuis, M., Gaudry, M., Bohlen, P., Lipson, K. E., Rice, A., Wu, Y., Gougerot-Pocidalo, M. and Pasquier, C. (2003) Blockade of vascular endothelial growth factor receptor I (VEGF-RI), but not VEGF-RII, suppresses joint destruction in the K/BxN model of rheumatoid arthritis. J. Immunol. 171, 4853-4859. https://doi.org/10.4049/jimmunol.171.9.4853
  10. De Vries, C., Escobedo, J. A., Ueno, H., Houck, K., Ferrara, N. and Williams, L. T. (1992) The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255, 989-991. https://doi.org/10.1126/science.1312256
  11. Duchek, P., Somogyi, K., Jekely, G., Beccari, S. and Rorth, P. (2001) Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 107, 17-26 https://doi.org/10.1016/S0092-8674(01)00502-5
  12. Dvorak, H. F. (2002) Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J. Clin. Oncol. 20, 4368-4380. https://doi.org/10.1200/JCO.2002.10.088
  13. Eichmann, A., Corbel, C., Nataf, V., Vaigot, P., Breant, C. and Le Douarin, N. M. (1997) Ligand-dependent development of the endothelial and hemopoietic lineages from embryonic mesodermal cells expressing vascular endothelial growth factor receptor 2. Proc. Natl. Acad. Sci. USA 94, 5141-5146. https://doi.org/10.1073/pnas.94.10.5141
  14. Ferrara, N., Carver-Moore, K., Chen, H., Dowd, M., Lu, L., O'Shea, K. S., Powell-Braxton, L., Hillan, K. J. and Moore, M. W. (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439-442. https://doi.org/10.1038/380439a0
  15. Ferrara, N. and Davis-Smyth, T. (1997) The biology of vascular endothelial growth factor. Endocrine Rev. 18, 4-25. https://doi.org/10.1210/er.18.1.4
  16. Fong, G. H., Rossant, J., Gertsentein, M. and Breitman, M. L. (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66-70. https://doi.org/10.1038/376066a0
  17. Fuh, G., Li, B., Crowley, C., Cunningham, B. and Wells, J. A. (1998) Requirements for binding and signaling of the kinase domain receptor for vascular endothelial growth factor. J. Biol. Chem. 273, 11197-11204. https://doi.org/10.1074/jbc.273.18.11197
  18. Gasmi, A., Bourcier, C., Aloui, Z., Srairi, N., Marchetti, S., Gimond, C., Wedge, S. R., Hennequin, L. and Pouyssegur, J. (2002) Complete structure of an increasing capillary permeability protein (ICPP) purified from Vipera lebetina venom. ICPP is angiogenic via vascular endothelial growth factor receptor signalling. J. Biol. Chem. 277, 29992-29998. https://doi.org/10.1074/jbc.M202202200
  19. Gerber, H. P., McMurtrey, A., Kowalski, J., Yan, M., Keyt, B. A., Dixit, V. and Ferrara, N. (1998) Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J. Biol. Chem. 273, 30336-30343. https://doi.org/10.1074/jbc.273.46.30336
  20. Hanahan, D. and Folkman, J. (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353-364. https://doi.org/10.1016/S0092-8674(00)80108-7
  21. Heldin, C. H. and Westermark, B. (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol. Rev. 79, 1283-1316. https://doi.org/10.1152/physrev.1999.79.4.1283
  22. Helske, S., Vuorela, P., Carpen, O., Hornig, C., Weich, H. and Halmesmäki, E. (2001) Expression of vascular endothelial growth factor receptors 1, 2 and 3 in placentas from normal and complicated pregnancies. Mol. Hum. Reprod. 7, 205-210. https://doi.org/10.1093/molehr/7.2.205
  23. Hirakawa, S., Kodama, S., Kunstfeld, R., Kajiya, K., Brown, L. F. and Detmar, M. (2005) VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J. Exp. Med. 201, 1089-1099. https://doi.org/10.1084/jem.20041896
  24. Hiratsuka, S., Minowa, O., Kuno, J., Noda, T. and Shibuya, M. (1998) Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc. Natl. Acad. Sci. USA 95, 9349-9354. https://doi.org/10.1073/pnas.95.16.9349
  25. Hiratsuka, S., Maru, Y., Okada, A., Seiki, M., Noda, T. and Shibuya, M. (2001) Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis. Cancer Res 61, 1207-1213.
  26. Hiratsuka, S., Nakamura, K., Iwai, S., Murakami, M., Itoh, T., Kijima, H., Shipley, J. M., Senior, R. M. and Shibuya, M. (2002) MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung specific metastasis. Cancer Cell 2, 289-300. https://doi.org/10.1016/S1535-6108(02)00153-8
  27. Hiratsuka, S., Kataoka, Y., Nakao, K., Nakamura, K., Morikawa, S., Tanaka, S., Katsuki, M., Maru, Y. and Shibuya, M. (2005) Vascular endothelial growth factor A (VEGF-A) is involved in guidance of VEGF receptor-positive cells to the anterior portion of early embryos. Mol. Cell. Biol. 25, 355-363. https://doi.org/10.1128/MCB.25.1.355-363.2005
  28. Hurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., Berlin, J., Baron, A., Griffing, S., Holmgren, E., Ferrara, N., Fyfe, G., Rogers, B., Ross, R. and Kabbinavar, F. (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335-2342. https://doi.org/10.1056/NEJMoa032691
  29. Ishimaru, S., Ueda, R., Hinohara, Y., Ohtani, M. and Hanafusa, H. (2004) PVR plays a critical role via JNK activation in thorax closure during Drosophila metamorphosis. EMBO J 23, 3984-3994. https://doi.org/10.1038/sj.emboj.7600417
  30. Ito, N., Huang, K. and Claesson-Welsh, L. (2001) Signal transduction by VEGF receptor-1 wild type and mutant proteins. Cell Signal 13, 849-854. https://doi.org/10.1016/S0898-6568(01)00209-1
  31. Joukov, V., Pajusola, K., Kaipainen, A., Chilov, D., Lahtinen, I., Kukk, E., Saksela, O., Kalkkinen, N. and Alitalo, K. (1996) A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 15, 290-298.
  32. Kaipainen, A., Korhonen, J., Pajusola, K., Aprelikova, O., Persico, M. G., Terman, B. I. and Alitalo, K. (1993) The related FLT4, FLT1, and KDR receptor tyrosine kinases show distinct expression patterns in human fetal endothelial cells. J. Exp. Med. 178, 2077-2088. https://doi.org/10.1084/jem.178.6.2077
  33. Kawasaki, T., Kitsukawa, T., Bekku, Y., Matsuda, Y., Sanbo, M., Yagi, T. and Fujisawa, H. (1999) A requirement for neuropilin-1 in embryonic vessel formation. Development 126, 4895-4902.
  34. Kaplan, R. N., Riba RD, Zacharoulis S, et al. (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820-827 https://doi.org/10.1038/nature04186
  35. Kendall, R. L. and Thomas, K. A. (1993) Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc. Natl. Acad. Sci. USA 90, 10705-10709. https://doi.org/10.1073/pnas.90.22.10705
  36. Keyt, B. A., Nguyen, H. V., Berleau, L. T., Duarte, C. M., Park, J., Chen, H. and Ferrara, N. (1996) Identification of vascular endothelial growth factor determinanats for binding KDR and FLT-1 receptors. J. Biol. Chem. 271, 5638-5646. https://doi.org/10.1074/jbc.271.10.5638
  37. Kiba, A., Sagara, H., Hara, T. and Shibuya, M. (2003a) VEGFR-2-specific ligand VEGF-E induces non-edematous hypervascularization in mice. Biochem. Biophys. Res. Commun. 301, 371-377. https://doi.org/10.1016/S0006-291X(02)03033-4
  38. Kiba, A., Yabana, N. and Shibuya, M. (2003b) A set of loop-1 and -3 structures in the novel VEGF family member, VEGFE$_{NZ-7}$, is essential for the activation of VEGFR-2 signaling. J. Biol. Chem. 278, 13453-13461. https://doi.org/10.1074/jbc.M210931200
  39. Koga, K., Osuga Y, Yoshino O, Hirota, Y., Ruimeng, X., Hirata, T., Takeda, S., Yano, T., Tsutsumi, O. and Taketani, Y. (2003) Elevated serum soluble vascular endothelial growth factor receptor 1 (sVEGFR-1) levels in women with preeclampsia. J. Clin. Endocrinol. Metab. 88, 2348-2351. https://doi.org/10.1210/jc.2002-021942
  40. Larcher, F., Murillas, R., Bolontrade, M., Conti, C. J. and Jorcano, J. L. (1998) VEGF/VPF overexpression in skin of transgenic mice induces angiogenesis, vascular hyperpermeability and accelerated tumor development. Oncogene 17, 303-311. https://doi.org/10.1038/sj.onc.1201928
  41. Levine, R. J., Maynard, S. E., Qian, C., et al. (2004) Circulating angiogenic factors and the risk of preeclampsia. N. Engl. J. Med. 350, 672-683. https://doi.org/10.1056/NEJMoa031884
  42. Luo, J. C., Yamaguchi, S., Shinkai, A., Shitara, K. and Shibuya, M. (1998) Significant expression of vascular endothelial growth factor/vascular permeability factor in mouse ascites tumors. Cancer Res. 58, 2652-2660.
  43. Luttun, A., Tjwa, M., Moons, L., Wu, Y., Angelillo-Scherrer, A., et al. (2002) Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat. Med. 8, 831-840. https://doi.org/10.1038/nm731
  44. Lyden, D., Hattori, K., Dias, S., Costa, C., Blaikie, P., Butros, L., Chadburn, A., et al., (2001) Impaired recruitment of bonemarrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med. 7, 1194-1201. https://doi.org/10.1038/nm1101-1194
  45. Lyttle, D. J., Fraser, K. M., Fleming, S. B., Mercer, A. A. and Robinson, A. J. (1994) Homologs of vascular endothelial growth factor are encoded by the poxvirus orf virus. J. Virol. 68, 84-92.
  46. Maes, C., Carmeliet, P., Moermans, K., Stockmans, I., Smets, N., Collen, D., Bouillon, R. and Carmeliet, G. (2002) Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech. Dev. 111, 61-73. https://doi.org/10.1016/S0925-4773(01)00601-3
  47. Matsumoto, T. and Claesson-Welsh, L. (2001) VEGF receptor signal transduction. Sci STKE. 112, 21.
  48. Matsumoto, T., Bohman, S., Dixelius, J., Berge, T., Dimberg, A., Magnusson, P., Wang, L., Wikner, C., Qi, J. H., Wernstedt, C., Wu, J., Bruheim, S., Mugishima, H., Mukhopadhyay, D., Spurkland, A. and Claesson-Welsh, L. (2005) VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J. 24, 2342-2353. https://doi.org/10.1038/sj.emboj.7600709
  49. Matthews, W., Jordan, C. T., Gavin, M., Jenkins, N. A., Copeland, N. G. and Lemischka, I. R. (1991) A receptor tyrosine kinase cDNA isolated from a population of enriched primitive hematopoietic cells and exhibiting close genetic linkage to ckit. Proc. Natl. Acad. Sci. USA 88, 9026-9030. https://doi.org/10.1073/pnas.88.20.9026
  50. Maynard, S. E., Min, J. Y., Merchan, J., et al., (2003) Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest. 111, 649-658. https://doi.org/10.1172/JCI17189
  51. Meyer, M., Clauss, M., Lepple-Wienhues, A., Waltenberger, J., Augustin, H. G., Ziche, M., Lanz, C., Buttner, M., Rziha, H. J. and Dehio, C. (1999) A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J. 18, 363-374. https://doi.org/10.1093/emboj/18.2.363
  52. Millauer, B., Wizigmann-Voos, S., Schnurch, H., Martinez, R., Moller, N. P. H., Risau, W. and Ullrich, A. (1993) High affinity VEGF binding and developmental expression suggest flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72, 835-846. https://doi.org/10.1016/0092-8674(93)90573-9
  53. Montaldo, F., Maffe, A., Morini, M., Noonan, D., Giordano, S., Albini, A. and Prat, M. (2000) Expression of functional tyrosine kinases on immortalized Kaposi's sarcoma cells. J. Cell. Physiol. 184, 246-254. https://doi.org/10.1002/1097-4652(200008)184:2<246::AID-JCP13>3.0.CO;2-O
  54. Murakami, M., Iwai, S., Hiratsuka, S., et al. (2006) Signaling of vascular endothelial growth factor receptor-1 tyrosine kinase promotes rheumatoid arthritis through activation of monocyte/ macrophages. Blood in press.
  55. Niida, S., Kondo, T., Hiratsuka, S., Hayashi, S., Amizuka, N., Noda, T., Ikeda, K. and Shibuya, M. (2005) Vascular endothelial growth factor receptor-1 signaling is essential for osteoclast development and bone-marrow formation in CSF-1-deficient mice. Proc Natl Acad Sci USA 102, 14016-14021. https://doi.org/10.1073/pnas.0503544102
  56. Ogawa, S., Oku, A., Sawano, A., Yamaguchi, S., Yazaki, Y. and Shibuya, M. (1998) A novel type of Vascular Endothelial Growth Factor: VEGF-E (NZ-7 VEGF) preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain. J. Biol. Chem. 273, 31273-31282. https://doi.org/10.1074/jbc.273.47.31273
  57. Ohtani, K., Egashira, K., Hiasa, K. I., Zhao, Q., Kitamoto, S., Ishibashi, M., Usui, M., Inoue, S., Yonemitsu, Y., Sueishi, K., Sata, M., Shibuya, M. and Sunagawa, K. (2004) Blockade of vascular endothelial growth factor suppresses experimental restenosis after intraluminal injury by inhibiting recruitment of monocyte lineage cells. Circulation 110, 2444-2452. https://doi.org/10.1161/01.CIR.0000145123.85083.66
  58. Plate, K. H., Breier, G., Weich, H. A., Mennel, H. D. and Risau, W. (1994) Vascular endothelial growth factor and glioma angiogenesis: coordinate induction of VEGF receptors, distribution of VEGF protein and possible in vivo regulatory mechanisms. Int. J. Cancer 59, 520-529. https://doi.org/10.1002/ijc.2910590415
  59. Risau, W. (1997) Mechanism of angiogenesis. Nature 386, 671-674. https://doi.org/10.1038/386671a0
  60. Sakurai, Y., Ohgimoto, K., Kataoka, Y., Yoshida, N. and Shibuya, M. (2005) Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proc. Natl. Acad. Sci. USA 102, 1076-1081. https://doi.org/10.1073/pnas.0404984102
  61. Sawano, A., Takahashi, T., Yamaguchi, S., Aonuma, M. and Shibuya, M. (1996) Flt-1 but not KDR/Flk-1 tyrosine kinase is a receptor for placenta growth factor (PlGF), which is related to vascular endothelial growth factor (VEGF). Cell Growth Differ. 7, 213-221.
  62. Sawano, A., Takahashi, T., Yamaguchi, S., et al. (1997) The phosphorylated 1169-tyrosine containing region of Flt-1 kinase (VEGFR-1) is a major binding site for PLC. Biochem. Biophys. Res. Commun. 238, 487-491. https://doi.org/10.1006/bbrc.1997.7327
  63. Sawano, A., Iwai, S., Sakurai, Y., Ito, M., Shitara, K., Nakahata, T. and Shibuya, M. (2001) Vascular endothelial growth factor receptor-1 (Flt-1) is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood 97, 785-791. https://doi.org/10.1182/blood.V97.3.785
  64. Seetharam, L., Gotoh, N., Maru, Y., et al. (1995) A unique signal transduction from FLT tyrosine kinase, a receptor for vascular endothelial growth factor VEGF. Oncogene 10, 135-147.
  65. Shalaby, F., Rossant, J., Yamaguchi, T. P., Gertsenstein, M., Wu, X. F., Breitman, M. L. and Schuh, A. C. (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376, 62-66. https://doi.org/10.1038/376062a0
  66. Shay-Salit, A., Shushy, M., Wolfovitz, E., Yahav, H., Breviario, F., Dejana, E. and Resnick, N. (2002) VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proc Natl Acad Sci USA 99, 9462-9467. https://doi.org/10.1073/pnas.142224299
  67. Shibuya, M., Yamaguchi, S., Yamane, A., Ikeda, T., Tojo, A., Matsushime, H. and Sato, M. (1990) Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene 5, 519-524.
  68. Shibuya, M. (1995) Role of VEGF-Flt receptor system in normal and tumor angiogenesis. Adv. Cancer Res. 67, 281-316. https://doi.org/10.1016/S0065-230X(08)60716-2
  69. Shibuya, M. (2002) Vascular endothelial growth factor receptor family genes: When did the three genes phylogenetically segregate? Biol. Chem. 383, 1573-1579. https://doi.org/10.1515/BC.2002.177
  70. Shibuya, M. and Claesson-Welsh, L. (2006) Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp. Cell Res. 312, 549-560. https://doi.org/10.1016/j.yexcr.2005.11.012
  71. Shinkai, A., Ito, M., Anazawa, H., Yamaguchi, S., Shitara, K. and Shibuya, M. (1998) Mapping of the sites involved in ligandassociation and dissociation at the extracellular domain of vascular endothelial growth factor receptor KDR. J. Biol. Chem. 273, 31283-31288. https://doi.org/10.1074/jbc.273.47.31283
  72. Stupack, D. G. and Cheresh, D. A. (2004) Integrins and angiogenesis. Curr. Top. Dev. Biol. 64, 207-238. https://doi.org/10.1016/S0070-2153(04)64009-9
  73. Takahashi, H., Hattori, S., Iwamatsu, A., Takizawa, H. and Shibuya, M. (2004) A novel snake venom vascular endothelial growth factor (VEGF) predominantly induces vascular permeability through preferential signaling via VEGF receptor- 1. J. Biol. Chem. 279, 46304-46314. https://doi.org/10.1074/jbc.M403687200
  74. Takahashi, T., Ueno, H. and Shibuya, M. (1999) VEGF activates protein kinase C-dependent, but Ras-independent Raf-MEKMAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene 18, 2221-2230. https://doi.org/10.1038/sj.onc.1202527
  75. Takahashi, T., Yamaguchi, S., Chida, K. and Shibuya, M. (2001) A Single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC- and DNA synthesis in vascular endothelial cells. EMBO J. 20, 2768-2778. https://doi.org/10.1093/emboj/20.11.2768
  76. Tanaka, K., Yamaguchi, S., Sawano, A., et al. (1997) Characterization of the extracellular domain in the vascular endothelial growth factor receptor-1 (Flt-1 tyrosine kinase). Jpn. J. Cancer Res. 88, 867-876. https://doi.org/10.1111/j.1349-7006.1997.tb00463.x
  77. Terman, B. I., Carrion, M. E., Kovacs, E., Rasmussen, B. A., Eddy, R. and Shows, T. B. (1991) Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene 6, 1677-1683.
  78. Veikkola, T., Jussila, L., Makinen, T., Karpanen, T., Jeltsch, M., Petrova, T. V., Kubo, H., Thurston, G., McDonald, D. M., Achen, M. G., Stacker, S. A. and Alitalo, K. (2001) Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J. 20, 1223-1231. https://doi.org/10.1093/emboj/20.6.1223
  79. Waltenberger, J., Claesson-Welsh, L., Siegbahn, A., Shibuya, M. and Heldin, C. H. (1994) Different signal transduction properties of KDR and Flt1, two receptors for Vascular Endothelial Growth Factor. J. Biol. Chem. 269, 26988-26995.
  80. Wedge, S. R., Ogilvie, D. J., Dukes, M., Kendrew, J., Curwen, J. O., Hennequin, L. F., Thomas, A. P., Stokes, E. S., Curry, B., Richmond, G. H. and Wadsworth, P. F. (2000) ZD4190: an orally active inhibitor of vascular endothelial growth factor signaling with broad-spectrum antitumor efficacy. Cancer Res. 60, 970-975.
  81. Wise, L. M., Veikkola, T., Mercer, A. A., Savory, L. J., Fleming, S. B., Caesar, C., Vitali, A., Makinen, T., Alitalo, K. and Stacker, S. A. (1999) Vascular endothelial growth factor (VEGF)-like protein from orf virus NZ2 binds to VEGFR2 and neuropilin-1. Proc. Natl. Acad. Sci. USA 96, 3071-3076. https://doi.org/10.1073/pnas.96.6.3071
  82. Wood, J. M., Bold, G., Buchdunger, E., Cozens, R., Ferrari, S., Frei, J., et al., (2000) PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res. 60, 2178-2189.
  83. Xia, P., Aiello, L. P., Ishii, H., Jiang, Z. Y., Park, D. J., Robinson, G. S., Takagi, H., Newsome, W. P., Jirousek, M. R. and King, G. L. (1996) Characterization of vascular endothelial growth factor's effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J. Clin. Invest. 98, 2018-2026. https://doi.org/10.1172/JCI119006
  84. Yamashita, J., Itoh, H., Hirashima, M., Ogawa, M., Nishikawa, S., Yurugi, T., Naito, M., Nakao, K. and Nishikawa, S. (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408, 92-96. https://doi.org/10.1038/35040568
  85. Zeng, H., Sanyal, S. and Mukhopadhyay, D. (2001) Tyrosine residues 951 and 1059 of vascular endothelial growth factor receptor-2 (KDR) are essential for vascular permeability factor/ vascular endothelial growth factor-induced endothelium migration and proliferation, respectively. J. Biol. Chem. 276, 32714-32719. https://doi.org/10.1074/jbc.M103130200
  86. Zhao, Q., Egashira, K., Hiasa, K. I., Ishibashi, M., Inoue, S., Ohtani, K., Tan, C., Shibuya, M., Takeshita, A. and Sunagawa, K. (2004) Essential role of vascular endothelial growth factor and Flt-1 signals in neointimal formation after periadventitial injury. Arterioscler Thromb. Vasc. Biol. 24, 2284-2289. https://doi.org/10.1161/01.ATV.0000147161.42956.80
  87. Zheng, Y., Murakami, M., Takahashi, H., Yamauchi, M., Kiba, A., Yamaguchi, S., Yabana, N., Alitalo, K. and Shibuya, M. (2006) Chimeric VEGF-ENZ7/PlGF Promotes Angiogenesis via VEGFR-2 without Significant Enhancement of Vascular Permeability and Inflammation. Arterioscl Thromb. Vasc. Biol. in press.

Cited by

  1. Exposure to Excess Phenobarbital Negatively Influences the Osteogenesis of Chick Embryos vol.7, 2016, https://doi.org/10.3389/fphar.2016.00349
  2. Immunohistochemical expression of vascular endothelial growth factor A (VEGF), and its receptors (VEGFR1, 2) in normal and pathologic conditions of the human thymus vol.190, pp.3, 2008, https://doi.org/10.1016/j.aanat.2007.05.003
  3. Vasculogeneic maturation of E14 embryonic stem cells with evidence of early vascular endothelial growth factor independency vol.76, pp.8, 2008, https://doi.org/10.1111/j.1432-0436.2008.00271.x
  4. Tumor microenvironment and breast cancer progression vol.13, pp.1, 2012, https://doi.org/10.4161/cbt.13.1.18869
  5. Comparison of anti-angiogenic properties of pristine carbon nanoparticles vol.8, pp.1, 2013, https://doi.org/10.1186/1556-276X-8-195
  6. Regulation of decidualization and angiogenesis in the human endometrium: Mini review vol.40, pp.5, 2014, https://doi.org/10.1111/jog.12392
  7. Soluble and Membranous Vascular Endothelial Growth Factor Receptor-2 in Pregnancies Complicated by Pre-Eclampsia vol.50, pp.5, 2009, https://doi.org/10.3349/ymj.2009.50.5.656
  8. Role of Extracellular Vesicles and microRNAs on Dysfunctional Angiogenesis during Preeclamptic Pregnancies vol.7, 2016, https://doi.org/10.3389/fphys.2016.00098
  9. Changes in serum concentrations of soluble vascular endothelial growth factor receptor-1 after pregnancy vol.26, pp.1, 2011, https://doi.org/10.1093/humrep/deq304
  10. Anti-angiogenic gene therapy for hepatocellular carcinoma mediated by microbubble-enhanced ultrasound exposure: Anin vivoexperimental study vol.16, pp.5, 2008, https://doi.org/10.1080/10611860802088846
  11. Decreased serum angiogenin level in Alzheimer's disease vol.38, pp.2, 2012, https://doi.org/10.1016/j.pnpbp.2012.02.010
  12. Anti-SPARC oligopeptide inhibits laser-induced CNV in mice vol.50, pp.7, 2010, https://doi.org/10.1016/j.visres.2009.12.003
  13. Autocrine functions of VEGF in breast tumor cells vol.6, pp.6, 2012, https://doi.org/10.4161/cam.23332
  14. Antiangiogenic therapies: is VEGF-A inhibition alone enough? vol.11, pp.3, 2011, https://doi.org/10.1586/era.11.5
  15. VEGF: an Essential Mediator of Both Angiogenesis and Endochondral Ossification vol.86, pp.10, 2007, https://doi.org/10.1177/154405910708601006
  16. Thyroid size change by CT monitoring after sorafenib or sunitinib treatment in patients with renal cell carcinoma: Comparison with thyroid function vol.81, pp.9, 2012, https://doi.org/10.1016/j.ejrad.2011.06.035
  17. Microtubule-associated protein 4 is an important regulator of cell invasion/migration and a potential therapeutic target in esophageal squamous cell carcinoma vol.35, pp.37, 2016, https://doi.org/10.1038/onc.2016.17
  18. Associations of VEGF and its receptors sVEGFR-1 and -2 with cardiovascular disease and survival in prevalent haemodialysis patients vol.24, pp.11, 2009, https://doi.org/10.1093/ndt/gfp315
  19. Candesartan, an angiotensin II type 1 receptor antagonist, inhibits pathological retinal neovascularization by downregulating VEGF receptor-2 expression vol.685, pp.1-3, 2012, https://doi.org/10.1016/j.ejphar.2012.04.017
  20. Immunotherapy against angiogenesis-associated targets: evidence and implications for the treatment of malignant glioma vol.8, pp.5, 2008, https://doi.org/10.1586/14737140.8.5.717
  21. Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8 vol.111, pp.7, 2014, https://doi.org/10.1073/pnas.1320243111
  22. Inhibitory effects of Feiyanning Decoction on proliferation, migration and tube formation of human umbilical vein endothelial cells in vitro vol.7, pp.3, 2009, https://doi.org/10.3736/jcim20090311
  23. The Upregulation of Angiogenic Gene Expression in Cultured Retinal Pigment Epithelial Cells Grown on Type I Collagen vol.32, pp.10, 2007, https://doi.org/10.1080/02713680701604749
  24. CORRELATION OF INCREASED INTRAVITREOUS WNT3A WITH VASCULAR ENDOTHELIAL GROWTH FACTOR IN PROLIFERATIVE DIABETIC RETINOPATHY vol.36, pp.4, 2016, https://doi.org/10.1097/IAE.0000000000000784
  25. The therapeutic potential of oxygen tension manipulation via hypoxia inducible factors and mimicking agents in guided bone regeneration. A review vol.56, pp.12, 2011, https://doi.org/10.1016/j.archoralbio.2011.05.001
  26. ERK1/2-Dependent Vascular Endothelial Growth Factor Signaling Sustains Cyst Growth in Polycystin-2 Defective Mice vol.138, pp.1, 2010, https://doi.org/10.1053/j.gastro.2009.09.005
  27. Metformin regresses endometriotic implants in rats by improving implant levels of superoxide dismutase, vascular endothelial growth factor, tissue inhibitor of metalloproteinase-2, and matrix metalloproteinase-9 vol.202, pp.4, 2010, https://doi.org/10.1016/j.ajog.2009.10.873
  28. Angiogenesis regulatory factors in the vitreous from patients with proliferative diabetic retinopathy vol.50, pp.4, 2013, https://doi.org/10.1007/s00592-011-0330-9
  29. Antiangiogenic gene therapy with soluble VEGF-receptors -1, -2 and -3 together with paclitaxel prolongs survival of mice with human ovarian carcinoma vol.131, pp.10, 2012, https://doi.org/10.1002/ijc.27495
  30. Quantitative PET Imaging of VEGF Receptor Expression vol.11, pp.1, 2009, https://doi.org/10.1007/s11307-008-0172-1
  31. Targeted Contrast-Enhanced Ultrasound Imaging of Angiogenesis in an Orthotopic Mouse Tumor Model of Renal Carcinoma vol.40, pp.6, 2014, https://doi.org/10.1016/j.ultrasmedbio.2013.12.001
  32. The Bartonella henselae VirB/Bep system interferes with vascular endothelial growth factor (VEGF) signalling in human vascular endothelial cells vol.13, pp.3, 2011, https://doi.org/10.1111/j.1462-5822.2010.01545.x
  33. A fusion fragment from Flt-1 and KDR, acted as VEGF decoy receptor and exhibited anti-tumor function vol.32, pp.11, 2010, https://doi.org/10.1007/s10529-010-0342-5
  34. VEGF Inhibits Tumor Cell Invasion and Mesenchymal Transition through a MET/VEGFR2 Complex vol.22, pp.1, 2012, https://doi.org/10.1016/j.ccr.2012.05.037
  35. An Elevated Ratio of Placental Growth Factor to Soluble Fms-like Tyrosine Kinase-1 Predicts Adverse Outcomes in Patients with Stable Coronary Artery Disease vol.52, pp.10, 2013, https://doi.org/10.2169/internalmedicine.52.9073
  36. Suppression of hypoxia-induced HIF-1α accumulation by VEGFR inhibitors: Different profiles of AAL993 versus SU5416 and KRN633 vol.296, pp.1, 2010, https://doi.org/10.1016/j.canlet.2010.03.010
  37. Circulating Hematopoietic Progenitor Cells are Decreased in COPD 2013, https://doi.org/10.3109/15412555.2013.841668
  38. Squamous Cell Carcinoma Xenografts: Use of VEGFR2-targeted Microbubbles for Combined Functional and Molecular US to Monitor Antiangiogenic Therapy Effects vol.278, pp.2, 2015, https://doi.org/10.1148/radiol.2015142899
  39. Estrogen and selective estrogen receptor modulators regulate vascular endothelial growth factor and soluble vascular endothelial growth factor receptor 1 in human endometrial stromal cells vol.93, pp.8, 2010, https://doi.org/10.1016/j.fertnstert.2009.08.056
  40. Circulating levels of VEGFR-1 and VEGFR-2 in patients with metastatic melanoma treated with chemoimmunotherapy alone or combined with bevacizumab vol.21, pp.5, 2011, https://doi.org/10.1097/CMR.0b013e32834941d3
  41. In vivo bioluminescence imaging of vascular remodeling after stroke vol.8, 2014, https://doi.org/10.3389/fncel.2014.00274
  42. Hypoxic-ischemic gene expression profile in the isolated variant of biliary atresia vol.22, pp.12, 2015, https://doi.org/10.1002/jhbp.297
  43. Effects of prolonged ingestion of epigallocatechin gallate on diabetes type 1-induced vascular modifications in the erectile tissue of rats vol.28, pp.4, 2016, https://doi.org/10.1038/ijir.2016.19
  44. Effects of selected food phytochemicals in reducing the toxic actions of TCDD and p,p′-DDT in U937 macrophages vol.84, pp.12, 2010, https://doi.org/10.1007/s00204-010-0592-y
  45. Vascular endothelial growth factor directly stimulates tumour cell proliferation in non-small cell lung cancer 2015, https://doi.org/10.3892/ijo.2015.3082
  46. Angiogenesis and parasitic helminth-associated neovascularization vol.138, pp.04, 2011, https://doi.org/10.1017/S0031182010001642
  47. Endothelial Progenitor Cells: Current Issues on Characterization and Challenging Clinical Applications vol.8, pp.3, 2012, https://doi.org/10.1007/s12015-011-9332-9
  48. Generation of Recombinant Extracellular Fragment of Vascular Endothelial Growth Factor Receptor 2 and Specific Monoclonal Antibodies to This Receptor vol.156, pp.3, 2014, https://doi.org/10.1007/s10517-014-2348-9
  49. Expression of vascular endothelial growth factor in cultured human dental follicle cells and its biological roles vol.28, pp.7, 2007, https://doi.org/10.1111/j.1745-7254.2007.00586.x
  50. Molecular regulation of angiogenesis and lymphangiogenesis vol.8, pp.6, 2007, https://doi.org/10.1038/nrm2183
  51. Tenomodulin Inhibits Retinal Neovascularization in a Mouse Model of Oxygen-Induced Retinopathy vol.13, pp.12, 2012, https://doi.org/10.3390/ijms131115373
  52. Blocking αvβ3 integrin by a recombinant RGD disintegrin impairs VEGF signaling in endothelial cells vol.94, pp.8, 2012, https://doi.org/10.1016/j.biochi.2012.04.020
  53. Pro-angiogenic effects of MDM2 through HIF-1α and NF-κB mediated mechanisms in LNCaP prostate cancer cells vol.41, pp.8, 2014, https://doi.org/10.1007/s11033-014-3430-0
  54. Prognostic significance of VEGFR1/Flt-1 immunoexpression in colorectal carcinoma vol.35, pp.9, 2014, https://doi.org/10.1007/s13277-014-2124-5
  55. Identification of ARIA regulating endothelial apoptosis and angiogenesis by modulating proteasomal degradation of cIAP-1 and cIAP-2 vol.106, pp.20, 2009, https://doi.org/10.1073/pnas.0806780106
  56. Molecular control of endothelial cell behaviour during blood vessel morphogenesis vol.12, pp.9, 2011, https://doi.org/10.1038/nrm3176
  57. Genome-scale identification and characterization of moonlighting proteins vol.9, pp.1, 2014, https://doi.org/10.1186/s13062-014-0030-9
  58. Ligand-independent activation of vascular endothelial growth factor receptor 1 by low-density lipoprotein vol.8, pp.12, 2007, https://doi.org/10.1038/sj.embor.7401103
  59. Oroxylin A inhibits angiogenesis through blocking vascular endothelial growth factor-induced KDR/Flk-1 phosphorylation vol.136, pp.5, 2010, https://doi.org/10.1007/s00432-009-0705-2
  60. Down Regulation of Vascular Endothelial Growth Factor Is Associated With Decreased Inflammation After Intravesical OnabotulinumtoxinA Injections Combined With Hydrodistention for Patients With Interstitial Cystitis—Clinical Results and Immunohistochemistry Analysis vol.82, pp.6, 2013, https://doi.org/10.1016/j.urology.2013.09.003
  61. Dietary Phenolic Acids Act as Effective Antioxidants in Membrane Models and in Cultured Cells, Exhibiting Proapoptotic Effects in Leukaemia Cells vol.2012, 2012, https://doi.org/10.1155/2012/839298
  62. A Pathophysiologic Approach to Biomarkers in Acute Respiratory Distress Syndrome vol.2016, 2016, https://doi.org/10.1155/2016/3501373
  63. VEGFR-3 Neutralization Inhibits Ovarian Lymphangiogenesis, Follicle Maturation, and Murine Pregnancy vol.183, pp.5, 2013, https://doi.org/10.1016/j.ajpath.2013.07.031
  64. Impaired angiogenesis in the enalapril-treated neonatal rat kidney vol.59, pp.1, 2016, https://doi.org/10.3345/kjp.2016.59.1.8
  65. Bevacizumab fails to treat temporal paraganglioma: discussion and case illustration vol.98, pp.3, 2010, https://doi.org/10.1007/s11060-009-0091-2
  66. VEGF in the Crosstalk between Human Adipocytes and Smooth Muscle Cells: Depot-Specific Release from Visceral and Perivascular Adipose Tissue vol.2013, 2013, https://doi.org/10.1155/2013/982458
  67. Roles of Vascular Endothelial Growth Factor in Amyotrophic Lateral Sclerosis vol.2014, 2014, https://doi.org/10.1155/2014/947513
  68. Vascular endothelial growth factor and bladder from a different perspective: not only an angiogenic factor vol.45, pp.2, 2010, https://doi.org/10.1016/j.jpedsurg.2009.10.002
  69. Anti-VEGF in diabetic retinopathy and diabetic macular edema vol.11, pp.6, 2016, https://doi.org/10.1080/17469899.2016.1251312
  70. Laminin promotes vascular network formation in 3D in vitro collagen scaffolds by regulating VEGF uptake vol.327, pp.1, 2014, https://doi.org/10.1016/j.yexcr.2014.05.012
  71. The relevance of cell type- and tumor zone-specific VEGFR-2 activation in locally advanced colon cancer vol.34, pp.1, 2015, https://doi.org/10.1186/s13046-015-0162-5
  72. Acute pyelonephritis during pregnancy changes the balance of angiogenic and anti-angiogenic factors in maternal plasma vol.23, pp.2, 2010, https://doi.org/10.3109/14767050903067378
  73. Logical structures extracted from metastasis experiments vol.100, pp.11, 2009, https://doi.org/10.1111/j.1349-7006.2009.01300.x
  74. Hypoxia Influences the Vascular Expansion and Differentiation of Embryonic Stem Cell Cultures Through the Temporal Expression of Vascular Endothelial Growth Factor Receptors in an ARNT-Dependent Manner vol.28, pp.4, 2010, https://doi.org/10.1002/stem.316
  75. Identification and characterization of VEGF-A-responsive neutrophils expressing CD49d, VEGFR1, and CXCR4 in mice and humans vol.126, pp.17, 2015, https://doi.org/10.1182/blood-2015-03-631572
  76. Regulation of endothelial MAPK/ERK signalling and capillary morphogenesis by low-amplitude electric field vol.10, pp.78, 2012, https://doi.org/10.1098/rsif.2012.0548
  77. Hypertension and angiogenesis in the aging kidney: A review vol.52, pp.3, 2011, https://doi.org/10.1016/j.archger.2010.11.032
  78. Mesenchymal stem cells protect against neonatal rat hyperoxic lung injury vol.13, pp.6, 2013, https://doi.org/10.1517/14712598.2013.778969
  79. Visualization of Tumor Angiogenesis Using MR Imaging Contrast Agent Gd-DTPA-anti-VEGF Receptor 2 Antibody Conjugate in a Mouse Tumor Model vol.11, pp.4, 2010, https://doi.org/10.3348/kjr.2010.11.4.449
  80. Cellular and molecular processes of regeneration, with special emphasis on fish fins vol.49, pp.2, 2007, https://doi.org/10.1111/j.1440-169X.2007.00917.x
  81. Angiogenesis and growth factor modulation induced by alternagin C, a snake venom disintegrin-like, cysteine-rich protein on a rat skin wound model vol.479, pp.1, 2008, https://doi.org/10.1016/j.abb.2008.07.030
  82. Mechanisms of angiogenesis vol.73, pp.7, 2008, https://doi.org/10.1134/S0006297908070031
  83. Inhibition of Angiogenesis by Recombinant VEGF Receptor Fragments vol.41, pp.7, 2010, https://doi.org/10.1309/LMMH2WYRLP7B3HJN
  84. Effect of exercise training on the density of endothelial cells in the white adipose tissue of rats vol.21, pp.6, 2011, https://doi.org/10.1111/j.1600-0838.2010.01176.x
  85. Periostin gene polymorphisms, protein levels and risk of incident coronary artery disease vol.39, pp.1, 2012, https://doi.org/10.1007/s11033-011-0746-x
  86. Expression of a Recombinant Extracellular Fragment of Human Vascular Endothelial Growth Factor Receptor VEGFR1 in E. coli vol.151, pp.3, 2011, https://doi.org/10.1007/s10517-011-1327-7
  87. Merkel cell carcinoma expresses vasculogenic mimicry: demonstration in patients and experimental manipulation in xenografts vol.94, pp.10, 2014, https://doi.org/10.1038/labinvest.2014.99
  88. Prognostic angiogenic markers (endoglin, VEGF, CD31) and tumor cell proliferation (Ki67) for gastrointestinal stromal tumors vol.21, pp.22, 2015, https://doi.org/10.3748/wjg.v21.i22.6924
  89. Inhibition of placenta growth factor with TB-403: a novel antiangiogenic cancer therapy vol.12, pp.6, 2012, https://doi.org/10.1517/14712598.2012.679655
  90. Flt-1 in colorectal cancer cells is required for the tumor invasive effect of placental growth factor through a p38-MMP9 pathway vol.20, pp.1, 2013, https://doi.org/10.1186/1423-0127-20-39
  91. RNAi-Based Treatment for Neovascular Age-Related Macular Degeneration by Sirna-027 vol.150, pp.1, 2010, https://doi.org/10.1016/j.ajo.2010.02.006
  92. Quantitative Secretome Analysis of Activated Jurkat Cells Using Click Chemistry-Based Enrichment of Secreted Glycoproteins vol.16, pp.1, 2017, https://doi.org/10.1021/acs.jproteome.6b00575
  93. Vascular endothelial growth factor receptor-2 in breast cancer vol.1806, pp.1, 2010, https://doi.org/10.1016/j.bbcan.2010.04.004
  94. Endothelin-1 increases the expression of VEGF-R1/Flt-1 receptors in rat cultured astrocytes through ETBreceptors vol.130, pp.6, 2014, https://doi.org/10.1111/jnc.12770
  95. Dynamics of endothelial cell behavior in sprouting angiogenesis vol.22, pp.5, 2010, https://doi.org/10.1016/j.ceb.2010.08.010
  96. Phospholipase signalling networks in cancer vol.12, pp.11, 2012, https://doi.org/10.1038/nrc3379
  97. The biological effects and mechanisms of calcitonin gene-related peptide on human endothelial cell vol.33, pp.2, 2013, https://doi.org/10.3109/10799893.2013.770528
  98. Impaired adenosine-mediated angiogenesis in preeclampsia: potential implications for fetal programming vol.5, 2014, https://doi.org/10.3389/fphar.2014.00134
  99. Circulating endothelial progenitor cells and angiogenic factors in diabetes complicated diabetic foot and without foot complications vol.29, pp.5, 2015, https://doi.org/10.1016/j.jdiacomp.2015.03.013
  100. Cotargeting of VEGFR-1 and -3 and angiopoietin receptor Tie2 reduces the growth of solid human ovarian cancer in mice vol.18, pp.2, 2011, https://doi.org/10.1038/cgt.2010.56
  101. Regulation of soluble VEGFR-2 secreted by microvascular endothelial cells derived from human BPH vol.15, pp.2, 2012, https://doi.org/10.1038/pcan.2011.63
  102. Wnt/β-Catenin Signaling Determines the Vasculogenic Fate of Postnatal Mesenchymal Stem Cells vol.34, pp.6, 2016, https://doi.org/10.1002/stem.2334
  103. New VEGF antagonists as possible therapeutic agents in vascular disease vol.17, pp.9, 2008, https://doi.org/10.1517/13543784.17.9.1301
  104. Analysis of circulating angiogenic biomarkers from patients in two phase III trials in lung cancer of chemotherapy alone or chemotherapy and thalidomide vol.106, pp.6, 2012, https://doi.org/10.1038/bjc.2012.50
  105. Anti-angiogenic effect of tamoxifen combined with epirubicin in breast cancer patients vol.123, pp.3, 2010, https://doi.org/10.1007/s10549-010-1063-0
  106. Plasma Vascular Endothelial Growth Factor Dysregulation in Defining Aggressiveness of Head and Neck Squamous Cell Carcinoma vol.2012, 2012, https://doi.org/10.1155/2012/687934
  107. Targeting endothelial and tumor cells with semaphorins vol.26, pp.3-4, 2007, https://doi.org/10.1007/s10555-007-9097-4
  108. ZEB2 promotes vasculogenic mimicry by TGF-β1 induced epithelial-to-mesenchymal transition in hepatocellular carcinoma vol.98, pp.3, 2015, https://doi.org/10.1016/j.yexmp.2015.03.030
  109. Molecular Biology for the Radiation Oncologist: the 5Rs of Radiobiology meet the Hallmarks of Cancer vol.19, pp.8, 2007, https://doi.org/10.1016/j.clon.2007.04.009
  110. Iberian pig early pregnancy: Vascular endothelial growth factor receptor system expression in the maternofetal interface in healthy and arresting conceptuses vol.83, pp.3, 2015, https://doi.org/10.1016/j.theriogenology.2014.07.046
  111. Malignant cell-derived PlGF promotes normalization and remodeling of the tumor vasculature vol.106, pp.41, 2009, https://doi.org/10.1073/pnas.0908026106
  112. Microvascular destruction identifies murine allografts that cannot be rescued from airway fibrosis vol.117, pp.12, 2007, https://doi.org/10.1172/JCI32311
  113. The tip cell concept 10 years after: New players tune in for a common theme vol.319, pp.9, 2013, https://doi.org/10.1016/j.yexcr.2013.01.019
  114. Phase II angiogenesis stimulators vol.22, pp.9, 2013, https://doi.org/10.1517/13543784.2013.813933
  115. Biosensors in Clinical Practice: Focus on Oncohematology vol.13, pp.5, 2013, https://doi.org/10.3390/s130506423
  116. Up-regulation of soluble vascular endothelial growth factor receptor-1 prevents angiogenesis in hypertrophied myocardium vol.89, pp.2, 2011, https://doi.org/10.1093/cvr/cvq321
  117. A preliminary approach to creating an overview of lactoferrin multi-functionality utilizing a text mining method vol.23, pp.3, 2010, https://doi.org/10.1007/s10534-010-9311-7
  118. Preclinical Safety, Toxicology, and Biodistribution Study of Adenoviral Gene Therapy with sVEGFR-2 and sVEGFR-3 Combined with Chemotherapy for Ovarian Cancer vol.24, pp.1, 2013, https://doi.org/10.1089/humc.2013.006
  119. Danshensu has anti-tumor activity in B16F10 melanoma by inhibiting angiogenesis and tumor cell invasion vol.643, pp.2-3, 2010, https://doi.org/10.1016/j.ejphar.2010.06.045
  120. Vascular therapy for radiation cystitis vol.30, pp.3, 2011, https://doi.org/10.1002/nau.21002
  121. Association between VEGF Receptors and Baseline Peritoneal Transport Status in New Peritoneal Dialysis Patients vol.34, pp.5, 2012, https://doi.org/10.3109/0886022X.2012.669322
  122. Response of VEGF to activation of viral receptors and TNFα in human mesangial cells vol.370, pp.1-2, 2012, https://doi.org/10.1007/s11010-012-1406-8
  123. Low maternal concentrations of soluble vascular endothelial growth factor receptor-2 in preeclampsia and small for gestational age vol.21, pp.1, 2008, https://doi.org/10.1080/14767050701831397
  124. Combined targeting of EGFR-dependent and VEGF-dependent pathways: rationale, preclinical studies and clinical applications vol.5, pp.9, 2008, https://doi.org/10.1038/ncponc1161
  125. Vascular Endothelial Growth Factor Receptor-1 Activation Mediates Epithelial to Mesenchymal Transition in Hepatocellular Carcinoma Cells vol.24, pp.2, 2011, https://doi.org/10.3109/08941939.2010.542272
  126. Vascular markers CD31, CD34, actin, VEGFB, and VEGFR2, are prognostic markers for malignant development in benign endometrial polyps vol.02, pp.01, 2012, https://doi.org/10.4236/ojog.2012.21004
  127. Prorenin receptor (PRR)-mediated NADPH oxidase (Nox) signaling regulates VEGF synthesis under hyperglycemic condition in ARPE-19 cells 2017, https://doi.org/10.1080/10799893.2017.1369120
  128. Angiogenic markers in canine lymphoma tissues do not predict survival times in chemotherapy treated dogs vol.92, pp.3, 2012, https://doi.org/10.1016/j.rvsc.2011.04.018
  129. Evaluation of inflammatory and angiogenic factors in patients with non-alcoholic fatty liver disease vol.59, pp.2, 2012, https://doi.org/10.1016/j.cyto.2012.05.001
  130. Expression of cell adhesion proteins and proteins related to angiogenesis and fatty acid metabolism in benign, atypical, and anaplastic meningiomas vol.89, pp.1, 2008, https://doi.org/10.1007/s11060-008-9588-3
  131. Accelerated orthotopic hepatocellular carcinomas growth is linked to increased expression of pro-angiogenic and prometastatic factors in murine liver fibrosis vol.28, pp.4, 2008, https://doi.org/10.1111/j.1478-3231.2008.01670.x
  132. Direct Comparison of Four Adeno-Associated Virus Serotypes in Mediating the Production of Antiangiogenic Proteins in Mouse Muscle vol.29, pp.5, 2011, https://doi.org/10.3109/07357907.2011.584585
  133. The patterns and expression of KDR in normal tissues of human internal organs vol.42, pp.6, 2011, https://doi.org/10.1007/s10735-011-9355-1
  134. Ultrasound Molecular Imaging of VEGFR2 in a Rat Prostate Tumor Model Using BR55 vol.45, pp.10, 2010, https://doi.org/10.1097/RLI.0b013e3181ee8b83
  135. Vascular Endothelial Growth Factor Downregulates Apolipoprotein M Expression by Inhibiting Foxa2 in a Nur77-Dependent Manner vol.15, pp.4, 2012, https://doi.org/10.1089/rej.2011.1295
  136. Susceptibility loci for intracranial aneurysm in European and Japanese populations vol.40, pp.12, 2008, https://doi.org/10.1038/ng.240
  137. Vascular Endothelial Growth Factor Pathway vol.4, pp.11, 2009, https://doi.org/10.1097/01.JTO.0000361755.32660.a1
  138. Anti-angiogenic activity of thymoquinone by the down-regulation of VEGF using zebrafish (Danio rerio) model vol.2, pp.3, 2012, https://doi.org/10.1016/j.bionut.2012.03.011
  139. Expression of the vascular endothelial growth factor receptor neuropilin-1 in the human endometrium vol.79, pp.2, 2009, https://doi.org/10.1016/j.jri.2008.09.001
  140. Flt-1 regulates vascular endothelial cell migration via a protein tyrosine kinase-7-dependent pathway vol.117, pp.21, 2011, https://doi.org/10.1182/blood-2010-09-306928
  141. Purinergic regulation of vascular endothelial growth factor signaling in angiogenesis vol.100, pp.9, 2009, https://doi.org/10.1038/sj.bjc.6604998
  142. The Angiogenic Biomarker Endocan is Upregulated in Proliferative Diabetic Retinopathy and Correlates with Vascular Endothelial Growth Factor vol.40, pp.3, 2015, https://doi.org/10.3109/02713683.2014.921312
  143. Total saponins of Panax notoginseng enhance VEGF and relative receptors signals and promote angiogenesis derived from rat bone marrow mesenchymal stem cells vol.147, pp.3, 2013, https://doi.org/10.1016/j.jep.2013.03.043
  144. Pro-Angiogenic Activity of TLRs and NLRs: A Novel Link Between Gut Microbiota and Intestinal Angiogenesis vol.144, pp.3, 2013, https://doi.org/10.1053/j.gastro.2012.11.005
  145. Age-Related Changes in Soluble Vascular Endothelial Growth Factor Receptor 1 (sVEGFR1) and Receptor 2 (sVEGFR2) in Healthy Japanese Subjects vol.30, pp.3, 2015, https://doi.org/10.1007/s12291-014-0463-z
  146. Dexamethasone Exposure Accelerates Endochondral Ossification of Chick EmbryosViaAngiogenesis vol.149, pp.1, 2016, https://doi.org/10.1093/toxsci/kfv227
  147. Colorectal carcinoma cell production of transforming growth factor beta decreases expression of endothelial cell vascular endothelial growth factor receptor 2 vol.117, pp.24, 2011, https://doi.org/10.1002/cncr.26247
  148. Soluble VEGFR-2: an antilymphangiogenic variant of VEGF receptors vol.1207, 2010, https://doi.org/10.1111/j.1749-6632.2010.05714.x
  149. Gold(III) porphyrin 1a prolongs the survival of melanoma-bearing mice and inhibits angiogenesis vol.50, pp.5, 2011, https://doi.org/10.3109/0284186X.2010.537693
  150. Role of microRNAs in diabetes and its cardiovascular complications vol.93, pp.4, 2012, https://doi.org/10.1093/cvr/cvr300
  151. Purinergic mechanisms in breast cancer support intravasation, extravasation and angiogenesis vol.291, pp.2, 2010, https://doi.org/10.1016/j.canlet.2009.09.021
  152. Soluble fms-like tyrosine kinase-1 antibody for diagnosis purposes (WO2010075475) vol.21, pp.6, 2011, https://doi.org/10.1517/13543776.2011.577071
  153. Sinusoid development and morphogenesis may be stimulated by VEGF-Flk-1 signaling during fetal mouse liver development vol.239, pp.2, 2010, https://doi.org/10.1002/dvdy.22162
  154. Quantitative fluorescent profiling of VEGFRs reveals tumor cell and endothelial cell heterogeneity in breast cancer xenografts vol.3, pp.2, 2014, https://doi.org/10.1002/cam4.188
  155. A review of anti-VEGF agents for proliferative diabetic retinopathy vol.28, pp.5, 2014, https://doi.org/10.1038/eye.2014.13
  156. On Aerobic Exercise and Behavioral and Neural Plasticity vol.2, pp.4, 2012, https://doi.org/10.3390/brainsci2040709
  157. Intramyocardial delivery of VEGF165 via a novel biodegradable hydrogel induces angiogenesis and improves cardiac function after rat myocardial infarction vol.31, pp.6, 2016, https://doi.org/10.1007/s00380-015-0710-0
  158. Angiogenin and apoptosis in hypertension in pregnancy vol.1, pp.3-4, 2011, https://doi.org/10.1016/j.preghy.2011.07.002
  159. BR55: A Lipopeptide-Based VEGFR2-Targeted Ultrasound Contrast Agent for Molecular Imaging of Angiogenesis vol.45, pp.2, 2010, https://doi.org/10.1097/RLI.0b013e3181c5927c
  160. Placental Growth Factor as a Protective Paracrine Effector in the Heart vol.21, pp.8, 2011, https://doi.org/10.1016/j.tcm.2012.05.014
  161. Prognostic and predictive value of vascular endothelial growth factor and its soluble receptors, VEGFR-1 and VEGFR-2 levels in the sera of small cell lung cancer patients vol.25, pp.4, 2008, https://doi.org/10.1007/s12032-008-9052-4
  162. In vivo monitoring of angiogenesis in a mouse hindlimb ischemia model using fluorescent peptide-based probes vol.48, pp.7, 2016, https://doi.org/10.1007/s00726-016-2225-0
  163. Unraveling the influence of endothelial cell density on VEGF-A signaling vol.119, pp.23, 2012, https://doi.org/10.1182/blood-2011-11-390666
  164. Enhancement of vascular progenitor potential by protein kinase A through dual induction of Flk-1 and Neuropilin-1 vol.114, pp.17, 2009, https://doi.org/10.1182/blood-2008-12-195750
  165. Matrices and scaffolds for drug delivery in vascular tissue engineering vol.59, pp.4-5, 2007, https://doi.org/10.1016/j.addr.2007.03.018
  166. Chemotherapy agents and hypertension: A focus on angiogenesis blockade vol.9, pp.4, 2007, https://doi.org/10.1007/s11906-007-0058-7
  167. Genomic compartmentalization of gene families encoding core components of metazoan signaling systems vol.56, pp.4, 2013, https://doi.org/10.1139/gen-2013-0021
  168. Surface plasmon resonance biosensor for the detection of VEGFR-1—a protein marker of myelodysplastic syndromes vol.402, pp.1, 2012, https://doi.org/10.1007/s00216-011-5395-3
  169. Morpholino-Mediated Isoform Modulation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR2) Reduces Colon Cancer Xenograft Growth vol.6, pp.4, 2014, https://doi.org/10.3390/cancers6042330
  170. CD47 signaling pathways controlling cellular differentiation and responses to stress vol.50, pp.3, 2015, https://doi.org/10.3109/10409238.2015.1014024
  171. Gastroschisis: A gene-environment model involving the VEGF-NOS3 pathway vol.148C, pp.3, 2008, https://doi.org/10.1002/ajmg.c.30182
  172. Molecular and functional ultrasound imaging in differently aggressive breast cancer xenografts using two novel ultrasound contrast agents (BR55 and BR38) vol.21, pp.9, 2011, https://doi.org/10.1007/s00330-011-2138-y
  173. Soluble CD146 displays angiogenic properties and promotes neovascularization in experimental hind-limb ischemia vol.115, pp.18, 2010, https://doi.org/10.1182/blood-2009-06-229591
  174. Sphingosine 1-phosphate induces vesicular endothelial growth factor expression in endothelial cells vol.42, pp.10, 2009, https://doi.org/10.5483/BMBRep.2009.42.10.685
  175. VEGF-independent cell-autonomous functions of HIF-1α regulating oxygen consumption in fetal cartilage are critical for chondrocyte survival vol.27, pp.3, 2012, https://doi.org/10.1002/jbmr.1487
  176. Increased placental angiogenesis in late and early onset pre-eclampsia is associated with differential activation of vascular endothelial growth factor receptor 2 vol.35, pp.3, 2014, https://doi.org/10.1016/j.placenta.2014.01.007
  177. Vascular endothelial growth factor in heart failure vol.10, pp.9, 2013, https://doi.org/10.1038/nrcardio.2013.94
  178. Serum amyloid A stimulates vascular endothelial growth factor receptor 2 expression and angiogenesis vol.72, pp.1, 2016, https://doi.org/10.1007/s13105-015-0462-4
  179. Response of vascular endothelial growth factor and angiogenesis-related genes to stepwise increases in inspired oxygen in neonatal rat lungs vol.73, pp.5, 2013, https://doi.org/10.1038/pr.2013.21
  180. EMMPRIN promotes angiogenesis through hypoxia-inducible factor-2 -mediated regulation of soluble VEGF isoforms and their receptor VEGFR-2 vol.114, pp.27, 2009, https://doi.org/10.1182/blood-2009-04-217380
  181. Epicardial HIF signaling regulates vascular precursor cell invasion into the myocardium vol.376, pp.2, 2013, https://doi.org/10.1016/j.ydbio.2013.01.026
  182. Zinc finger E-box binding homeobox 1 promotes vasculogenic mimicry in colorectal cancer through induction of epithelial-to-mesenchymal transition vol.103, pp.4, 2012, https://doi.org/10.1111/j.1349-7006.2011.02199.x
  183. Energy restriction and exercise modulate angiopoietins and vascular endothelial growth factor expression in the cavernous tissue of high-fat diet-fed rats vol.14, pp.4, 2012, https://doi.org/10.1038/aja.2011.131
  184. Functional Epigenetic Analysis of Prostate Carcinoma: A Role for Seryl-tRNA Synthetase? vol.2014, 2014, https://doi.org/10.1155/2014/362164
  185. Advances in Growth Factor Delivery for Therapeutic Angiogenesis vol.50, pp.1, 2013, https://doi.org/10.1159/000345108
  186. Genetic variant in the 3'-untranslated region of VEGFR1 gene influences chronic obstructive pulmonary disease and lung cancer development in Chinese population vol.29, pp.5, 2014, https://doi.org/10.1093/mutage/geu020
  187. A study of the Distribution and Density of the VEGFR-2 Receptor on Glioma Microvascular Endothelial Cell Membranes vol.31, pp.5, 2011, https://doi.org/10.1007/s10571-011-9665-6
  188. Disruption of components of vascular endothelial growth factor angiogenic signalling system in metabolic syndrome vol.109, pp.4, 2013, https://doi.org/10.1160/TH12-09-0654
  189. Angiogenic and Vasculogenic Factors in the Vitreous from Patients with Proliferative Diabetic Retinopathy vol.2013, 2013, https://doi.org/10.1155/2013/539658
  190. κ Opioid receptor ligands regulate angiogenesis in development and in tumours vol.172, pp.2, 2015, https://doi.org/10.1111/bph.12573
  191. Genetic variants inKDRtranscriptional regulatory region affect promoter activity and intramuscular fat deposition inErhualianpigs vol.45, pp.3, 2014, https://doi.org/10.1111/age.12148
  192. A structural model of the VEGF signalling pathway: Emergence of robustness and redundancy properties vol.10, pp.1, 2012, https://doi.org/10.3934/mbe.2013.10.167
  193. A multimodal approach to diabetic macular edema vol.30, pp.3, 2016, https://doi.org/10.1016/j.jdiacomp.2015.11.008
  194. Soluble receptors for vascular endothelial growth factor (sVEGFR1/sVEGFR2) in infantile hemangioma vol.28, pp.6, 2010, https://doi.org/10.3109/08977194.2010.505566
  195. Secretion of soluble VEGF receptor 2 by microvascular endothelial cells derived by human benign prostatic hyperplasia vol.27, pp.2, 2009, https://doi.org/10.1080/08977190802709619
  196. MicroRNA-200b Regulates Vascular Endothelial Growth Factor-Mediated Alterations in Diabetic Retinopathy vol.60, pp.4, 2011, https://doi.org/10.2337/db10-1557
  197. Expression of angiogenic factors in placenta of stressed rats vol.24, pp.6, 2012, https://doi.org/10.1071/RD11202
  198. Expression of lysophosphatidic acid, autotaxin and acylglycerol kinase as biomarkers in diabetic retinopathy vol.50, pp.3, 2013, https://doi.org/10.1007/s00592-012-0422-1
  199. Glioblastoma: Therapeutic challenges, what lies ahead vol.1826, pp.2, 2012, https://doi.org/10.1016/j.bbcan.2012.05.004
  200. Vascular Endothelial Growth Factor Receptor Family in Ascidians, Halocynthia roretzi (Sea Squirt). Its High Expression in Circulatory System-Containing Tissues vol.14, pp.3, 2013, https://doi.org/10.3390/ijms14034841
  201. The role IL-1 in tumor-mediated angiogenesis vol.5, 2014, https://doi.org/10.3389/fphys.2014.00114
  202. Sunitinib Induces Hypothyroidism in Advanced Cancer Patients and May Inhibit Thyroid Peroxidase Activity vol.17, pp.4, 2007, https://doi.org/10.1089/thy.2006.0308
  203. Evaluation of the growth factors VEGF-a and VEGF-B in the vitreous and serum of patients with macular and retinal vascular diseases vol.36, pp.1-2, 2018, https://doi.org/10.1080/08977194.2018.1477140
  204. Acid ceramidase, an emerging target for anti-cancer and anti-angiogenesis pp.1976-3786, 2019, https://doi.org/10.1007/s12272-019-01114-3