DOI QR코드

DOI QR Code

GTP Induces S-phase Cell-cycle Arrest and Inhibits DNA Synthesis in K562 Cells But Not in Normal Human Peripheral Lymphocytes

  • Received : 2006.01.25
  • Accepted : 2006.04.04
  • Published : 2006.09.30

Abstract

Since differentiation therapy is one of the promising strategies for treatment of leukemia, universal efforts have been focused on finding new differentiating agents. In that respect, we used guanosine 5'-triphosphate (GTP) to study its effects on K562 cell line. GTP, at concentrations between 25-200 ${\mu}M$, inhibited proliferation (3-90%) and induced 5-78% increase in benzidine-positive cells after 6-days of treatments of K562 cells. Flow cytometric analyses of glycophorine A (GPA) showed that GTP can induce expression of this marker in more mature erythroid cells in a time- and dose-dependent manner. These effects of GTP were also accompanied with inhibition of DNA synthesis (measured by [$^3H$]-thymidine incorporation) and early S-phase cell cycle arrest by 96 h of exposure. In contrast, no detectable effects were observed when GTP administered to unstimulated human peripheral blood lymphocytes (PBL). However, GTP induced an increase in proliferation, DNA synthesis and viability of mitogen-stimulated PBL cells. In addition, growth inhibition and differentiating effects of GTP were also induced by its corresponding nucleotides GDP, GMP and guanosine (Guo). In heat-inactivated medium, where rapid degradation of GTP via extracellular nucleotidases is slow, the anti-proliferative and differentiating effects of all type of guanine nucleotides (except Guo) were significantly decreased. Moreover, adenosine, as an inhibitor of Guo transporter system, markedly reduced the GTP effects in K562 cells, suggesting that the extracellulr degradation of GTP or its final conversion to Guo may account for the mechanism of GTP effects. This view is further supported by the fact that GTP and Guo are both capable of impeding the effects of mycophenolic acid. In conclusion, our data will hopefully have important impact on pharmaceutical evaluation of guanine nucleotides for leukemia treatments.

Keywords

References

  1. Amuth, V. and Berenblum, I. (1976) Phorbol as a possible systemic promoting agent for skin carcinogenesis. Z Krebsforsch Klin Onkol Cancer Res. Clin. Oncol. 85, 79-82. https://doi.org/10.1007/BF00308132
  2. Batiuk, D. T., Schnizlein-Bick, C., Plotkin, Z. and Dagher, P. C. (2001) Guanine nucleosides and Jurkat cell death: roles of ATP depletion and accumulation of deoxyribonucleotides. Am. J. Physiol. Cell Physiol. 281, 1779-1784.
  3. Bernhard, D., Tinhofer, I., Tonko, M., Hubl, H., Ausserlechner, M. J., Greil, R., Kofler, R. and Csordas, A. (2000) Resveratrol causes arrest in the S-phase prior to Fas-independent apoptosis in CEM-C7H2 acute leukemia cells. Cell Death Differ. 7, 834-842. https://doi.org/10.1038/sj.cdd.4400719
  4. Cao, T. and Heng, B. C. (2005) Differentiation therapy of cancer. Potential advantages over conventional therapeutic approaches targeting death of cancer/tumor cells. Med. Hypotheses 65, 1202-1203. https://doi.org/10.1016/j.mehy.2005.06.011
  5. Carvalhal, A. V., Santos, S. S., Calado, J., Haurg, M. and Carrondo, M. J. (2003) Cell growth arrest by nucleotides, nucleosides and bases as a tool for improved production of recombinant proteins. Biothechnol. Proog. 19, 69-83. https://doi.org/10.1021/bp0255917
  6. Cass, C. E., Young, J. D., Baldwin, S. A., Cabrita, M. A., Graham, K. A., Griffiths, M., Jennings, L. L., Mackey, J. R., Ng, A. M., Ritzel, M. W., Vickers, M. F. and Yao, S. Y. (1999) Nucleoside transporters of mammalian cells. Pharm Biotechnol. 12, 313-352.
  7. Carlile, G. W., Smith, D. H. and Wiedmann, M. (2004) Caspase-3 has a nonapoptotic function in erythroid maturation. Blood 103, 4310- 4316. https://doi.org/10.1182/blood-2003-09-3362
  8. Chow, S. C., Kass, G. E. and Orrenius, S. (1997) Purines and their roles in apoptosis. Neuropharmacology 36, 1149-1156. https://doi.org/10.1016/S0028-3908(97)00123-8
  9. Clarkson, B., Strife, A., Wisniewski, D., Lambek, C. L. and Liu, C. (2003) Chronic myelogenous leukemia as a paradigm of early cancer and possible curative strategies. Leukemia 17, 1211-1262. https://doi.org/10.1038/sj.leu.2402912
  10. Danilenko, M., Wang, X. and Studzinski, G. P. (2001) Carnosic acid and promotion of monocytic differentiation of HL60-G cells initiated by other agents. J. Natl. Cancer Inst. 93, 1224-1233. https://doi.org/10.1093/jnci/93.16.1224
  11. Deininger, M. W., Goldman, J. M. and Melo, J. V. (2000) The molecular biology of chronic myeloid leukemia. Blood 96, 3343-3356.
  12. Druker, B. J., Sawyers, C. L., Kantarjian, H., Resta, D. J., Reese, S. F., Ford, J. M., Capdeville, R. and Talpaz, M. (2001) Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med. 344, 1038-1042. https://doi.org/10.1056/NEJM200104053441402
  13. Giotta, G. J., Smith, J. R. and Nicolson, G. L. (1978) Guanosine 5'-triphosphate inhibits growth and stimulates differentiated functions in B16 melanoma cells. Exp. Cell. Res. 112, 385-393. https://doi.org/10.1016/0014-4827(78)90221-5
  14. Gorin, N. C., Estey, E., Jones, R. J., Levitsky, H. I., Borrello, I. and Slavin, S. (2000) New developments in the therapy of acute myelocytic leukemia. Hematology (Am Soc Hematol Educ Program). 69-89.
  15. Gysbers, J. W. and Rathbone, M. P. (1996) GTP and guanosine synergistically enhance NGF-induced neurite outgrowth from PC12 cells. Int. J. Dev. Neurosci. 14, 19-34. https://doi.org/10.1016/0736-5748(95)00083-6
  16. Hait, W. N., Choudhury, S., Srimatkandada, S. and Murren, J. R. (1993) Sensitivity of K562 human chronic myelogenous leukemia blast cells transfected with human multidrug resistance cDNA to cytotoxic drug and differentiating agents. J. Clin. Invest. 91, 2207-2215. https://doi.org/10.1172/JCI116447
  17. Hatse, S., Schols, D., De Clercq, E. and Balzarini, J. (1999) 9-(2-Phosphonylmethoxyethyl)adenine induces tumor cell differentiation or cell death by blocking cell cycle progression through the S phase. Cell Growth Diff. 10, 435-446.
  18. Huang, M., Wang, Y., Collins, M., Mitchell, B. S. and Graves, L. M. (2002) A77 1726 induces differentiation of human myeloid leukemia K562 cells by depletion of intracellular CTP pool. Mol. Pharmacol. 62, 463-472. https://doi.org/10.1124/mol.62.3.463
  19. Jayaram, H. N., Cooney, D. A., Grusch, M. and Krupitza, G. (1999) Consequences of IMP dehydrogenase inhibition, and its relationship to cancer and apoptosis. Curr. Med. Chem. 6, 561-574.
  20. Kawano, T., Horiguchi-Yamada, J., Iwase, S., Furukawa, Y., Kano, Y. and Yamada, H. (2004) Inactivation of ERK accelerates erythroid differentiation of K562 cells induced by herbimycin A and STI571 while activation of MEK1 interferes with it. Mol. Cell. Biochem. 258, 25-33. https://doi.org/10.1023/B:MCBI.0000012830.96393.b9
  21. Kawasaki, N., Morimoto, K., Tanimoto, T. and Hayakawa, T. (1996) Control of hemoglobin synthesis in erythroid differentiating K562 cells. I. Role of iron in erythroid cell heme synthesis. Arch. Biochem. Biophys. 328, 289-294. https://doi.org/10.1006/abbi.1996.0175
  22. Koeffler, H. B. and Golde, D. W. (1980) Human myeloid leukemia cell lines: A review. Blood 56, 344-350.
  23. Law, J. C., Ritke, M. K., Yalowich, J. C., Leder, G. H. and Ferrell, R. E. (1993) Mutational inactivation of the p53 gene in the human erythroid leukemic K562 cell line. Leuk. Res. 17, 1045-1050. https://doi.org/10.1016/0145-2126(93)90161-D
  24. Lemoli, R. M., Ferrari, D., Fogli, M., Rossi, L., Pizzirani, C., Forchap, S., Chiozzi, P., Vaselli, D., Bertolini, F., Foutz, T., Aluigi, M., Baccarani, M. and Di Virgilio, F. (2004) Extracellular nucleotides are potent stimulators of human hematopoietic stem cells in vitro and in vivo. Blood 104, 1662-1670. https://doi.org/10.1182/blood-2004-03-0834
  25. Lozzio, B. B. and Lozzio, C. B. (1977) Properties of the K562 cell line derived from a patient with choronic myeloid leukemia. Int. J. Cancer. 19, 136. https://doi.org/10.1002/ijc.2910190119
  26. Mlejnek, P. and Kozubek, S. (1997) Adenine-induced arrest of mammalian cells in early S-phase is related to the prevention of DNA synthesis inhibition caused by gamma-irradiation. Int. J. Radiol. Biol. 71, 505-513. https://doi.org/10.1080/095530097143833
  27. Moore, D. C., Carter, D. L., Bhandal, A. K. and Studzinski, G. P. (1991) Inhibition by 1,25 dihydroxyvitamin D3 of chemically induced erythroid differentiation of K562 leukemia cells. Blood 77, 1452-1461.
  28. Moosavi, M. A., Yazdanparast, R., Sanati, M. H. and Nejad, A. S. (2005) 3-hydrogenkwadaphnin targets inosine 5'-monophosphate dehydrogenase and triggers post-G1 arrest apoptosis in human leukemia cell lines. Int. J. Biochem. Cell. Biol. 37, 2366-2379. https://doi.org/10.1016/j.biocel.2005.04.020
  29. Morceau, F., Dupont, C., Palissot, V., Borde-Chiche, P., Trentesaux, C., Dicato, M. and Diederich, M. (2000) GTPmediated differentiation of the human K562 cell line: transient overexpression of GATA-1 and stabilization of the gammaglobin mRNA. Leukemia 14, 1589-1597. https://doi.org/10.1038/sj.leu.2401890
  30. O'Dwyer, M. (2002) Multifaceted approach to the treatment of bcr-abl-positive leukemias. The Oncologist 7, 30-38.
  31. Osti, F., Corradini, F. G., Hanau, S., Matteuzzi, M. and Gambari, R. (1997) Human leukemia K562 cells: induction of erythroid differentiation by guanine, guanosine and guanine nucleotides. Haematologica 82, 395-401.
  32. Pane, F., Intrieri, M., Quintarelli, C., Izzo, B., Muccioli, G. C. and Salvatore, F. (2002) BCR/ABL genes and leukemic phenotype: from molecular mechanisms to clinical correlations. Oncogene 21, 8652-8667. https://doi.org/10.1038/sj.onc.1206194
  33. Plagemenn, P. G., Richey, D. P., Zylka, J. M. and Erbe, J. (1975) Cell cycle and growth stage-dependent changes in the transport of nucleosides, hypoxanthine, choline, and deoxyglucose in cultured Novikoff rat hepatoma cells. J. Cell. Biol. 64, 29-41. https://doi.org/10.1083/jcb.64.1.29
  34. Rapaport, E. (1983) Treatment of human tumor cells with ADP or ATP yields arrest of growth in the S phase of the cell cycle. J. Cell. Physiol. 114, 279-283. https://doi.org/10.1002/jcp.1041140305
  35. Rapaport, E. (1994) Utilization of ATP administration for the treatment of cancer and AIDS. Exp. Opin. Investig. Drugs 3, 379-389. https://doi.org/10.1517/13543784.3.4.379
  36. Rathbone, M. P., Middlemiss, P. J., Gysbers, J. W., Andrew, C., Herman, M. A., Reed, J. K., Ciccarelli, R., Di Iorio, P. and Caciagli, F. (1999) Trophic effects of purines in neurons and glia cells. Prog. Neurobiol. 59, 663-690. https://doi.org/10.1016/S0301-0082(99)00017-9
  37. Reya, T., Morrison, S. J., Clarke, M. F. and Weissman, L. I. (2001) Stem cells, cancer and cancer stem cells. Nature 414, 105-111. https://doi.org/10.1038/35102167
  38. Schneider, C., Wiendl, H. and Ogilvie, A. (2001) Biphasic cytotoxic mechanism of extracellular ATP on U-937 human histiocytic leukemia cells: involvement of adenosine generation. Biochem. Biophys. Acta. 1538, 190-205. https://doi.org/10.1016/S0167-4889(01)00069-6
  39. Sell, S. (2004) Stem cell origin of cancer and differentiation therapy. Crit. Rev. Oncol. Hematol. 51, 1-28. https://doi.org/10.1016/j.critrevonc.2004.04.007
  40. Tetteroo, P. A., Massaro, F., Mulder, A., Schreuder-van Gelder, R. and Von dem Borne, A. E. (1984) Megakaryocytic differentiation of proerythroblastic K562 cell-line cells. Leuk. Res. 8, 197-206. https://doi.org/10.1016/0145-2126(84)90143-7
  41. Thiesin, J. T., Ohno-Jones, S., Kolibaba, K. S. and Druker, B.J. (2000) Efficacy of STI571, an Abl tyrosine kinase inhibitor, in conjunction with other antileukemic agents against Bcr-Ablpositive cells. Blood 96, 3195-319.
  42. Villeval, J. L., Pelicci, P. G., Tabilio, A., Titeux, M., Henri, A., Houesche, F., Thomopoulos, P., Vainchenker, W., Garbaz, M., Rochant, H., Breton-Gorius, J., Edwards, P. A. and Testa, U. (1983) Erythroid properties of K562 cells. Effect of hemin, Butyrate and TPA induction. Exp. Cell. Res. 146, 428-435. https://doi.org/10.1016/0014-4827(83)90145-3
  43. Voigt, W., Bulankin, A., Muller, T., Schoeber, C., Grothey, A., Hoang-Vu, C. and Schmoll, H. J. (2000) Schedule-dependent Antagonism of gemcitabine and cisplatin in human anaplastic thyroid cancer cell lines. Clin. Cancer Res. 6, 2087-2093.
  44. Weisman, G. A., Lustig, K. D., Lane, E., Huang, N. N., Belzer, I. and Friedberg, I. (1988) Growth inhibition and transformed mouse fibroblasts by adenine nucleotides occurs via generation of extracellular adenosine. J. Biol. Chem. 263, 12367-12372.
  45. Wong, S., McLaughlin, J., Cheng, D. and Witte, O. N. (2003) Cell context-specific effects of the BCR-ABL oncogene monitored in hematopoietic progenitors. Blood 101, 4088-4097. https://doi.org/10.1182/blood-2002-11-3376

Cited by

  1. Extracellular guanosine and GTP promote expression of differentiation markers and induce S-phase cell-cycle arrest in human SH-SY5Y neuroblastoma cells vol.27, pp.2, 2009, https://doi.org/10.1016/j.ijdevneu.2008.11.007
  2. 4-chloro-1,2-phenylenediamine Induces Apoptosis in Mardin-Darby canine kidney cells via activation of caspases vol.29, pp.6, 2014, https://doi.org/10.1002/tox.21792
  3. A p53-inducible microRNA-34a downregulates Ras signaling by targeting IMPDH vol.418, pp.4, 2012, https://doi.org/10.1016/j.bbrc.2012.01.077
  4. Mycophenolic Acid Overcomes Imatinib and Nilotinib Resistance of Chronic Myeloid Leukemia Cells by Apoptosis or a Senescent-Like Cell Cycle Arrest vol.2012, 2012, https://doi.org/10.1155/2012/861301
  5. Foxo3a targets mitochondria during guanosine 5′-triphosphate guided erythroid differentiation vol.44, pp.11, 2012, https://doi.org/10.1016/j.biocel.2012.06.023
  6. Antiproliferation effect of guanosine on HCT 116 cells involves MAPK and AMPK pathways vol.36, pp.4, 2017, https://doi.org/10.1080/15257770.2016.1268693
  7. Antiproliferative Activity, Cell-Cycle Dysregulation, and Cellular Differentiation: Salicyl- and Catechol-Derived Acyclic 5-FluorouracilO,N-Acetals against Breast Cancer Cells vol.2, pp.12, 2007, https://doi.org/10.1002/cmdc.200700142
  8. Down-regulation of the cyclin E1 oncogene expression by microRNA-16-1 induces cell cycle arrest in human cancer cells vol.42, pp.11, 2009, https://doi.org/10.5483/BMBRep.2009.42.11.725
  9. ERK1/2 inactivation and p38 MAPK-dependent caspase activation during guanosine 5′-triphosphate-mediated terminal erythroid differentiation of K562 cells vol.39, pp.9, 2007, https://doi.org/10.1016/j.biocel.2007.04.016
  10. Photodynamic N-TiO2 Nanoparticle Treatment Induces Controlled ROS-mediated Autophagy and Terminal Differentiation of Leukemia Cells vol.6, pp.1, 2016, https://doi.org/10.1038/srep34413
  11. Treatment of chemotherapy-induced neutropenia in a rat model by using multiple daily doses of oral administration of G-CSF-containing nanoparticles vol.35, pp.11, 2014, https://doi.org/10.1016/j.biomaterials.2014.01.020
  12. Guanosine acts intracellularly to initiate apoptosis in NB4 cells: A role for nucleoside transport vol.48, pp.9, 2007, https://doi.org/10.1080/10428190701528491
  13. Regulation of p38, PKC/Foxo3a/p73 Signaling Network by GTP During Erythroid Differentiation in Chronic Myelogenous Leukemia vol.67, pp.2, 2013, https://doi.org/10.1007/s12013-013-9557-0