DOI QR코드

DOI QR Code

cDNA Cloning, Expression and Homology Modeling of a Luciferase from the Firefly Lampyroidea maculata

  • Emamzadeh, Abdo Rahman (Department of Biochemistry, Faculty of Basic Sciences, Tarbiat Modarres University) ;
  • Hosseinkhani, Saman (Department of Biochemistry, Faculty of Basic Sciences, Tarbiat Modarres University) ;
  • Sadeghizadeh, Majid (Department of Genetics, Faculty of Basic Sciences, Tarbiat Modarres University) ;
  • Nikkhah, Maryam (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Chaichi, Mohammad Javad (Department of Chemistry, Mazandaran University) ;
  • Mortazavi, Mojtaba (Department of Biochemistry, Faculty of Basic Sciences, Tarbiat Modarres University)
  • Received : 2006.04.07
  • Accepted : 2006.05.23
  • Published : 2006.09.30

Abstract

The cDNA of a firefly luciferase from lantern mRNA of Lampyroidea maculata has been cloned, sequenced and functionally expressed. The cDNA has an open reading frame of 1647 bp and codes for a 548-residue-long polypeptide. Noteworthy, sequence comparison as well as homology modeling showed the highest degree of similarity with H. unmunsana and L. mingrelica luciferases, suggesting a close phylogenetic relationship despite the geographical distance separation. The deduced amino acid sequence of the luciferase gene of firefly L. maculata showed 93% identity to H. unmunsana. Superposition of the three-dimensional model of L. maculata luciferase (generated by homology modeling) and three dimensional structure of Photinus pyralis luciferase revealed that the spatial arrangements of Luciferin and ATP-binding residues are very similar. Putative signature of AMP-binding domain among the various firefly species and Lampyroidea maculata was compared and a striking similarity was found. Different motifs and sites have been identified in Lampyroidea maculata by sequence analysis. Expression and purification of luciferase from Lampyroidea maculata was carried out using Ni-NTA Sepharose. Bioluminescence emission spectrum was similar to Photinus pyralis luciferase.

Keywords

References

  1. Alipour, B. S., Hosseinkhani, S., Nikkhah, M., Naderi-Manesh, H., Chaichi, M. J. and Kazempour Osaloo, S. (2004) Molecular cloning, sequence analysis and expression of a cDNA encoding the luciferase from the glow-worm, Lampyris turkestanicus. Biochem. Biophys. Research. Comm. 325, 215-222. https://doi.org/10.1016/j.bbrc.2004.10.022
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  3. Bailey, J., Benard, M. and Burland, T. G. (1994) A luciferase expression system for physarum facilitates analysis of regulatory elements. Curr. Genet. 26, 126-131. https://doi.org/10.1007/BF00313799
  4. Baldwin, T. O. (1996) Firefly luciferase: The structure is known, but the mystery remains. Structure 4, 223-228. https://doi.org/10.1016/S0969-2126(96)00026-3
  5. Branchini, B. R., Magyar, R. M., Murtiashaw, S. A. and Zimmer, M. (1998) Site- Directed Mutagenesis of Histidine 245 in Firefly Luciferase: A proposed model for the active site. Biochemistry 37, 15311-15319. https://doi.org/10.1021/bi981150d
  6. Branchini, B. R., Murtiashaw, M. H., Magyar, R. A., Portier, N. C., Ruggiero, M. and Stroh, J. (2002) The influence of the region between residues 220 and 344 and beyond in Phrixotrix railroad worm luciferases green and red bioluminescence. J. Am. Chem. Soc. 124, 2112-2113. https://doi.org/10.1021/ja017400m
  7. Branchini, B. R., Southworth, T, L., Murtiashaw, M. H., Boije, H. and Fleet, S. E. (2003) A mutagenesis study of the putative luciferin binding site residues of firefly luciferase. Biochemistry 42, 10429-10436. https://doi.org/10.1021/bi030099x
  8. Branchini, B. R., Southworth, T. L., Khattak, N. F., Michelini, E. and Roda, A. (2005) Red- and green-emitting firefly luciferase mutants for bioluminescent reporter applications. Anal. Biochem. 345, 140-148. https://doi.org/10.1016/j.ab.2005.07.015
  9. Conti, E., Franks, N. P. and Brick, P. (1996) Crystal structure of firefly luciferase throws light on a superfamily of adenylateforming enzymes. Structure 4, 287-298. https://doi.org/10.1016/S0969-2126(96)00033-0
  10. De Hoop, M. J. and Ab, G. (1992) Import of proteins into peroxisomes and other microbodies. Biochem. J. 286, 657-669. https://doi.org/10.1042/bj2860657
  11. DeLuca, M. (1976) Firefly luciferase. Adv. Enzymol. 44, 37-68.
  12. Devine, J. H., Kutuzova, G. D., Green, V. A., Ugarova, N. N. and Baldwin, T. O. (1993) Luciferase from the east European firefly Luciola mingrelica: cloning and nucleotide sequence of the cDNA, overexpression in Escherichia coli and purification of the enzyme. Biochem. Biophys. Acta. 1173, 121-132.
  13. De Wet, J. R., Wood, K. V., Helinski, D. R. and DeLuca, M. (1985) Firefly luciferase gene: structure and expression in mammalian cells. Proc. Natl. Acad. Sci. USA 82, 7870-7873. https://doi.org/10.1073/pnas.82.23.7870
  14. Dilella, A. G., Hope, D. A., Chen, H., Trumbauer, M., Schwartz, R. J. and smith, R. G. (1988) Utility of firefly luciferase as a reporter gene for promoter activity in transgenic mice. Nucleic Acids Res. 16, 4159. https://doi.org/10.1093/nar/16.9.4159
  15. Gattiker, A., Gasteiger, E. and Bairoch, A. (2002) ScanProsite: a reference implementation of a PROSITE scanning tool. Appl. Bioinformatics 1, 107-108.
  16. Gesthardt, M. and Day, J. C. (2002) Lampyroidea maculata, coleopteran:Lampyrida.: a new species of lampyrid from Iran. Zootaxa 427, 1-6.
  17. Gould, S. J., Keller, G.-A., Hosken, N., Wilkinson, J. and Subramani, S. J. (1989) A conserved tripeptide sorts proteins to peroxisomes. Cell Biol. 108, 1657-1664. https://doi.org/10.1083/jcb.108.5.1657
  18. Gould, S. J. and Subramani, S. (1988) Firefly luciferase as a tool in molecular and cell biology. Anal. Biochem. 175, 5-13. https://doi.org/10.1016/0003-2697(88)90353-3
  19. Guex, N. and Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714-2723. https://doi.org/10.1002/elps.1150181505
  20. Hirokawa, K., Kajiyama, N. and Murakami, S. (2002) Improved practical usefulness of firefly luciferase by gene chimerization and random mutagenesis. Biochim. Biophys. Acta 1597, 271-279. https://doi.org/10.1016/S0167-4838(02)00302-3
  21. Howard, P. K., Ahern, K. G. and Firtel, R. A. (1988) Establishment of a transient expression system for Dictyostelium discoideum. Nucleic Acids Res. 16, 2613-2623. https://doi.org/10.1093/nar/16.6.2613
  22. Jacobs, W. R., Barletta, R. G., Udani, R., Chan, J., Kalkut, G., Sosne, G., Kieser, S. T., Hatfull, G. F. and Bloom, B. R. (1993) Rapid assessment of drug susceptibilities of mycobacterium tuberculosis by means of luciferase reporter phages. Science 260, 819-822. https://doi.org/10.1126/science.8484123
  23. Karlin, S. and Altschul, S. F. (1990) Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc. Natl. Acad. Sci. USA 87, 2264-2268. https://doi.org/10.1073/pnas.87.6.2264
  24. Keller, G, A. and Subramani, S. (1988) Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins. J. Cell Biol. 107, 897-905. https://doi.org/10.1083/jcb.107.3.897
  25. McElroy, W. D., Seliger, H. H. and White, E. H. (1969) Spectral emission and quantum yield of firefly bioluminescence. Photochem. Photobiol. 10, 153-170. https://doi.org/10.1111/j.1751-1097.1969.tb05676.x
  26. Miller, A. J., Short, S. R., Chua, N. H. and Say, S. A. (1992) A novel circadian phenotype based on firefly luciferase expression in transgenic plants. Plant Cell 4, 1075-1087. https://doi.org/10.1105/tpc.4.9.1075
  27. Ohmiya, Y., Ohmiya, Hirano, T. and Ohashi, M. (1996) The structural origin of the color differences in the bioluminescence of firefly luciferase. FEBS Lett. 384, 83-86. https://doi.org/10.1016/0014-5793(96)00288-8
  28. Sala-Newby, G. B. and Campbell A. K. (1991) Engineering a bioluminescent indicator for cyclic AMP-dependent protein kinase. Biochem. J. 279, 727-732. https://doi.org/10.1042/bj2790727
  29. Tatsumi, H., Kajiyama, N. and Nakano, E. (1992) Molecular cloning and expression in Escherichia coli of a cDNA clone encoding luciferase of a firefly, Luciola lateralis. Biochim. Biophys. Acta. 1131, 161-165. https://doi.org/10.1016/0167-4781(92)90071-7
  30. Viskas, B. P., Sumathy, S. and Karumathil, P. G. (1995) Baculovirus mediated high-level expression of luciferase in silkworm cells and larvae. Biotechniques 19, 97-104.
  31. Viviani, V. R., Arnoldi, F. G. C., Brochetto-Braga, M. and Ohmiya, Y. (2004) Cloning and characterization of the cDNA for the Brazilian Cratomorphus distinctus larval firefly luciferase: similarities with European Lampyris noctiluca and Asiatic Pyrocoelia luciferases. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 139, 151-156. https://doi.org/10.1016/j.cbpc.2004.05.012
  32. Viviani, V. R., Bechara, E. J. H. and Ohmiya, Y. (1999) Cloning, sequence analysis, and expression of active phrixothrix railroadworms luciferases: Relationship between bioluminescence spectra and primary structures. Biochemistry 38, 8271-8279. https://doi.org/10.1021/bi9900830
  33. Waud, J. P., Sala-Newby, G. B., Matthews, S. B. and Campbell, A. K. (1996) Engineering the C-terminus of firefly luciferase as an indicator of covalent modification of proteins. Biochim. Biophys. Acta. 1292, 89-98. https://doi.org/10.1016/0167-4838(95)00199-9
  34. White, E. H., Rapaport, E., Seliger, H. H. and Hopkins, T. A. (1971) The chemi- and bioluminescence of firefly luciferin: an efficient chemical production of electronically excited states. Bioorg. Chem. 1, 92-122. https://doi.org/10.1016/0045-2068(71)90009-5
  35. Wood, K. V. (1995) The chemical mechanism and evolutionary development of beetle bioluminescence. Photochem. Photobiol. 62, 662-673. https://doi.org/10.1111/j.1751-1097.1995.tb08714.x

Cited by

  1. Implication of Arg213 and Arg337 on the kinetic and structural stability of firefly luciferase vol.52, 2013, https://doi.org/10.1016/j.ijbiomac.2012.09.007
  2. Combining intracellular and secreted bioluminescent reporter proteins for multicolor cell-based assays vol.7, pp.2, 2008, https://doi.org/10.1039/b714251j
  3. Current advanced bioluminescence technology in drug discovery vol.4, pp.4, 2009, https://doi.org/10.1517/17460440902804372
  4. Firefly luciferase: an adenylate-forming enzyme for multicatalytic functions vol.67, pp.3, 2010, https://doi.org/10.1007/s00018-009-0170-8
  5. Construction and Characterization of Escherichia coli Whole-Cell Biosensors for Toluene and Related Compounds vol.62, pp.2, 2011, https://doi.org/10.1007/s00284-010-9764-5
  6. Genomic structure and promoter analysis of the dsz operon for dibenzothiophene biodesulfurization from Gordonia alkanivorans RIPI90A vol.87, pp.4, 2010, https://doi.org/10.1007/s00253-010-2605-4
  7. Design of disulfide bridge as an alternative mechanism for color shift in firefly luciferase and development of secreted luciferase vol.10, pp.7, 2011, https://doi.org/10.1039/c1pp05012e
  8. Relationship between stability and bioluminescence color of firefly luciferase vol.9, pp.3, 2010, https://doi.org/10.1039/b9pp00161a
  9. Molecular enigma of multicolor bioluminescence of firefly luciferase vol.68, pp.7, 2011, https://doi.org/10.1007/s00018-010-0607-0
  10. RACE-based amplification of cDNA and expression of a luciferin-regenerating enzyme (LRE): An attempt towards persistent bioluminescent signal vol.47, pp.4, 2010, https://doi.org/10.1016/j.enzmictec.2010.05.008
  11. Directed Improvement of Luciferin Regenerating Enzyme Binding Properties: Implication of Some Conserved Residues in Luciferin-Binding Domain vol.90, pp.6, 2014, https://doi.org/10.1111/php.12328
  12. Stabilization of firefly luciferase against thermal stress by osmolytes vol.43, pp.2, 2008, https://doi.org/10.1016/j.ijbiomac.2008.05.001