DOI QR코드

DOI QR Code

Molecular Analyses of the Metallothionein Gene Family in Rice (Oryza sativa L.)

  • Zhou, Gongke (Laboratory of Molecular Biology and Protein Science Laboratory of the Ministry of Education, Department of Biological Sciences and Biotechnology, Tsinghua University) ;
  • Xu, Yufeng (Laboratory of Molecular Biology and Protein Science Laboratory of the Ministry of Education, Department of Biological Sciences and Biotechnology, Tsinghua University) ;
  • Li, Ji (Laboratory of Molecular Biology and Protein Science Laboratory of the Ministry of Education, Department of Biological Sciences and Biotechnology, Tsinghua University) ;
  • Yang, Lingyan (Laboratory of Molecular Biology and Protein Science Laboratory of the Ministry of Education, Department of Biological Sciences and Biotechnology, Tsinghua University) ;
  • Liu, Jin-Yuan (Laboratory of Molecular Biology and Protein Science Laboratory of the Ministry of Education, Department of Biological Sciences and Biotechnology, Tsinghua University)
  • Received : 2006.04.16
  • Accepted : 2006.06.07
  • Published : 2006.09.30

Abstract

Metallothioneins are a group of low molecular mass and cysteine-rich metal-binding proteins, ubiquitously found in most living organisms. They play an important role in maintaining intracellular metal homeostasis, eliminating metal toxification and protecting against intracellular oxidative damages. Analysis of complete rice genome sequences revealed eleven genes encoding putative metallothionein (OsMT), indicating that OsMTs constitute a small gene family in rice. Expression profiling revealed that each member of the OsMT gene family differs not only in sequence but also in their tissue expression patterns, suggesting that these isoforms may have different functions they perform in specific tissues. On the basis of OsMT structural and phylogenetic analysis, the OsMT family was classified as two classes and class I was subdivided into four types. Additionally, in this paper we also present a complete overview of this family, describing the gene structure, genome localization, upstream regulatory element, and exon/intron organization of each member in order to provide valuable insight into this OsMT gene family.

Keywords

References

  1. Akashi, K., Nishimura, N., Ishida, Y. and Yokota, A. (2004) Potent hydroxyl radical-scavenging activity of drought-induced type-2 metallothionein in wild watermelon. Biochem. Biophys. Res. Com. 323, 72-78. https://doi.org/10.1016/j.bbrc.2004.08.056
  2. Bai, G., Stuebing, E. W., Parker, H. R., Harlow, P. and Nemer, M. (1993) Combinatorial regulation by promoter and intron 1 regions of the metallothionein SpMTA gene in sea urchin embryo. Mol. Cell Biol. 13, 993-1001. https://doi.org/10.1128/MCB.13.2.993
  3. Ballas, N., Wong, L. M. and Theologis, A. (1993) Identification of the auxin-responsive element, AuxRE, in the primary indoleacetic acid-inducible gene, PS-IAA4/5, of pea. J. Mol. Biol. 233, 580-596. https://doi.org/10.1006/jmbi.1993.1537
  4. Baumann, K., De Paolis, A., Costantino, P. and Gualberti, G. (1999) The DNA binding site of the Dof protein NtBBF1 is essential for tissue-specific and auxin-regulated expression of the rolB oncogene in plants. Plant Cell 11, 323-333. https://doi.org/10.1105/tpc.11.3.323
  5. Bilecen, K., Ozturk, U. H., Duru, A. D., Sutlu, T., Petoukhov, M. V., Svergun, D. I., Koch, M. H., Sezerman, U. O., Cakmak, I. and Sayers, Z. (2005) Triticum durum metallothionein: isolation of the gene and structural characterization of the protein using solution scattering and molecular modeling. J. Biol. Chem. 280, 13701-13711. https://doi.org/10.1074/jbc.M412984200
  6. Chatthai, M., Osusky, M., Osuska, L., Yevtushenko, D. and Misra, S. (2004) Functional analysis of a Douglas-fir metallothioneinlike gene promoter: transient assays in zygotic and somatic embryos and stable transformation in transgenic tobacco. Planta 220, 118-128. https://doi.org/10.1007/s00425-004-1332-4
  7. Cobbett, C. and Goldsbrough, P. (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu. Rev. Plant Biol. 53, 159-182. https://doi.org/10.1146/annurev.arplant.53.100301.135154
  8. Coupe, S. A., Taylor, J. E. and Roberts, J. A. (1995) Characterization of an mRNA encoding a metallothionein-like protein that accumulates during ethylene-promoted abscission of Sambucus nigra L. leaflets. Planta 97, 442-447.
  9. Coyle, P., Philcox, J. C., Carey, L. C. and Rofe, A. M. (2002) Metallothionein: the multipurpose protein. Cell Mol. Life Sci. 59, 627-647. https://doi.org/10.1007/s00018-002-8454-2
  10. Delhaize, E., Ryan, P. R., Hebb, D. M., Yamamoto, Y., Sasaki, T. and Matsumoto, H. (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc. Natl. Acad. Sci. 101, 15249-15254. https://doi.org/10.1073/pnas.0406258101
  11. Donath, M., Mendel, R., Cerff, R. and Martin, W. (1995) Introndependent transient expression of the maize GapA1 gene. Plant Mol. Biol. 28, 667-676. https://doi.org/10.1007/BF00021192
  12. Evans, I. M., Gatehouse, L. N., Gatehouse, J. A., Robinson, N. J. and Croy, R. R. (1990) A gene from pea (Pisum sativum L.) with homology to metallothionein genes. FEBS Lett. 262, 29-32. https://doi.org/10.1016/0014-5793(90)80145-9
  13. Ezcurra, I., Ellerstrom, M., Wycliffe, P., Stalberg, K. and Rask, L. (1999) Interaction between composite elements in the napA promoter: both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression. Plant Mol. Biol. 40, 699-709. https://doi.org/10.1023/A:1006206124512
  14. Fabisiak, J. P., Borisenko, G. G., Liu, S. X., Tyurin, V. A., Pitt, B. R. and Kagan, V. E. (2002) Redox sensor function of metallothioneins. Methods Enzymol. 353, 268-281.
  15. Foley, R. C. and Singh, K. B. (1994) Isolation of a Vicia faba metallothionein-like gene: expression in foliar trichomes. Plant Mol. Biol. 26, 435-444. https://doi.org/10.1007/BF00039552
  16. Freedman, J. H., Slice, L. W., Dixon, D., Fire, A. and Rubin, C. S. (1993) The novel metallothionein genes of Caenorhabditis elegans. J. Biol. Chem. 268, 2554-2564.
  17. Fu, H., Kim, S. Y. and Park, W. D. (1995) High-level tuber expression and sucrose inducibility of a potato Sus4 sucrose synthase gene require 5'-flanking and 3'-flanking sequences and the leader intron. Plant Cell 7, 1387-1394. https://doi.org/10.1105/tpc.7.9.1387
  18. Fukuzawa, H., Yu, L. H., Umeda-Hara, C., Tagawa, M. and Uchimiya, H. (2004) The rice metallothionein gene promoter does not direct foreign gene expression in seed endosperm. Plant Cell Rep. 23, 231-235. https://doi.org/10.1007/s00299-004-0813-z
  19. Garcia-Hernandez, M., Murphy, A. and Taiz, L. (1998) Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis. Plant Physiol. 118, 387-397. https://doi.org/10.1104/pp.118.2.387
  20. Giritch, A., Ganal, M., Stephan, U. W. and Baumlein, H. (1998) Structure, expression and chromosomal localisation of the metallothionein-like gene family of tomato. Plant Mol. Biol. 37, 701-714. https://doi.org/10.1023/A:1006001701919
  21. Gisela, M., Jordi, D., Gemma, H., Guo, W. J., Goldsbrough, P., Atrian, S. and Molinas, M. (2004) A plant type 2 metallothionein (MT) from cork tissue responds to oxidative stress. J. Exp. Bot. 55, 2483-2493. https://doi.org/10.1093/jxb/erh254
  22. Guo, W. J., Bundithya, W. and Goldsbrough, P. B. (2003) Characterization of the Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to cupper. New Phytol. 59, 369-381.
  23. Gurley, W. B., Czarnecka, E., Key, J. L. and Nagao, R. T. (1986) Upstream sequences required for efficient expression of a soybean heat shock gene. Mol. Cell Biol. 6, 559-565. https://doi.org/10.1128/MCB.6.2.559
  24. Hall, J. L. (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 53, 1-11. https://doi.org/10.1093/jexbot/53.366.1
  25. Haq, F., Mahoney, M. and Koropatnick, J. (2003) Signaling events for metallothionein induction. Mutation Res. 533, 211-226. https://doi.org/10.1016/j.mrfmmm.2003.07.014
  26. He, H., Lu, T., Zhang, R., Zhao, N. and Liu, J. Y. (2002) A prediction for the tertiary structure of metallothionein CAP3 from Colletotrichun gloeosporioides. Prog. Biochem. Biophys. 29, 293-296.
  27. Higo, K., Ugawa, Y., Iwamoto, M. and Korenaga, T. (1999) Plant cis-acting regulatory DNA element (PLACE) database: 1999. Nucleic Acid Res. 27, 297-300. https://doi.org/10.1093/nar/27.1.297
  28. Hsieh, H. M. and Huang, P. C. (1998) Promoter structure and activity of type 1 rice metallothionein-like gene. DNA Seq. 9, 9-17. https://doi.org/10.3109/10425179809050020
  29. Hsieh, H. M., Liu, W. K. and Huang, P. C. (1995) A novel stressinducible metallothionein-like gene from rice. Plant Mol. Biol. 8, 381-389.
  30. Hudspeth, R. L., Hobbs, S. L., Anderson, D. M., Rajasekaran, K. and Grula, J. W. (1996) Characterization and expression of metallothionein-like genes in cotton. Plant Mol. Biol. 31, 701-705. https://doi.org/10.1007/BF00042243
  31. International Rice Genome Sequencing Project. (2005) The mapbased sequence of the rice genome. Nature 436, 793-800. https://doi.org/10.1038/nature03895
  32. Kagi, J. H .R. (1993) Evolution, structure, and chemical activity of class I metallothionein: an overview; in Metallothionein III, Klaassen C. (ed.), pp. 29-56, Birkhauser Press Boston, USA.
  33. Kawashima, I., Inokuchi, Y., Chino, M., Kimura, M. and Shimizu, N. (1991) Isolation of a gene for a metallothionien-like protein from soybean. Plant Cell Physiol. 32, 913-916.
  34. Kim, S. Y., Chung, H. J. and Thomas, T. L. (1997) Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system. Plant J. 11, 1237-1251. https://doi.org/10.1046/j.1365-313X.1997.11061237.x
  35. Lane, B., Kajioka, R. and Kennedy, T. (1987) The wheat-germ Ec protein is a zinc-containing metallothionein. Biochem. Cell Biol. 65, 1001-1005. https://doi.org/10.1139/o87-131
  36. Ledger, S. E. and Gardner, R. C. (1994) Cloning and characterization of five cDNAs for genes differentially expressed during fruit development of kiwifruit (Actinidia deliciosa var. deliciosa). Plant Mol. Biol. 25, 877-886. https://doi.org/10.1007/BF00028882
  37. Li, Y. Z., Ma, H. M., Zhang, J. Y. and Hong, M. M. (1995) Effects of the first intron of rice Waxy gene on the expression of foreign genes in rice and tobacco protoplasts. Plant Sci. 108, 181-190. https://doi.org/10.1016/0168-9452(95)04143-I
  38. Liu, P., Goh, C. J., Loh, C. S. and Pua, E. C. (2002) Differential expression and characterization of three metallothionein-like genes in Cavendish banana (Musa acuminata). Physiol. Plant 114, 241-250. https://doi.org/10.1034/j.1399-3054.2002.1140210.x
  39. Lu, T., Liu, J. Y., Zhang, R. Q. and Zhao, N. M. (2003) Modeling rice rgMT as a plant metallothionein-like protein by the distance geometry and homology methods, Acta Bot. Sin. 45, 1297-1306.
  40. Lucca, P., Hurrell, R. and Potrykus, I. (2001) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor. Appl. Genet. 102, 392-397. https://doi.org/10.1007/s001220051659
  41. Lu, S., Gu, H., Yuan, X., Wang, X., Wu, A., Qu, L. J. and Liu, J. Y. (2006) The GUS reporter-aided analysis of the promoter activities of a rice metallothionein gene reveals different regulatory regions responsible for tissue-specific and inducible expression in transgenic Arabidopsis. Transgenic Research in press.
  42. Mehra, P. K., Garey, J. R. and Winge, D. R. (1990) Selective and tandem amplification of a member of the metallothionein gene family in Candida glabrata. J. Biol. Chem. 265, 6369-6375.
  43. Mett, V. L., Lochhead, L. P. and Reynolds, H. S. (1993) Coppercontrollable gene expression system for whole plants. Proc. Natl. Acad. Sci. 90, 4567-4571. https://doi.org/10.1073/pnas.90.10.4567
  44. Montgomery, J., Goldman, S., Deikman, J., Margossian, L. and Fischer, R. L. (1993) Identification of an ethylene-responsive region in the promoter of a fruit ripening gene. Proc. Natl. Acad. Sci. 90, 5939-5943. https://doi.org/10.1073/pnas.90.13.5939
  45. Mount, S. M. (1996) AT-AC introns: an AT/ACk on dogma. Science 271, 1690-1692. https://doi.org/10.1126/science.271.5256.1690
  46. Moyle, R., Fairbairn, D. J., Ripi, J., Crowe, M. and Botella, J. R. (2005) Developing pineapple fruit has a small transcriptome dominated by metallothionein. J. Exp. Bot. 56, 101-112. https://doi.org/10.1093/jxb/eri015
  47. Navabpour, S., Morris, K., Allen, R., Harrison, E., A-HMackerness, S. and Buchanan-Wollaston, V. (2003) Expression of senescence-enhanced genes in response to oxidative stress. J. Exp. Bot. 54, 2285-2292. https://doi.org/10.1093/jxb/erg267
  48. Page, R. D. M. (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Computer Appl. Biosci. 12, 357-358.
  49. Palmiter, R. D. (1998) The elusive function of metallothioneins. Proc. Natl. Acad. Sci. 95, 8428-8430. https://doi.org/10.1073/pnas.95.15.8428
  50. Palmiter, R. D., Findley, S. D., Whitmore, T. E. and Durnam, D. M. (1992) MT-III, a brain-specific member of the metallothionein gene family. Proc. Natl. Acad. Sci. 89, 6333-6337. https://doi.org/10.1073/pnas.89.14.6333
  51. Snowden, K. C., Buchholz, W. G. and Hall, T. C. (1996) Intron position affects expression from the tpi promoter in rice. Plant Mol. Biol. 31, 689-692. https://doi.org/10.1007/BF00042241
  52. Sutoh, K. and Yamauchi, D. (2003) Two cis-acting elements necessary and sufficient for gibberellin-upregulated proteinase expression in rice seeds. Plant J. 34, 636-645.
  53. Tommaso, G., Lucia, N., Bianca, E. M., Sonia, T. and Andrea, C. (2000) Characterization and expression of DNA sequences encoding putative type-II metallothioneins in the seagrass Posidonia oceanica. Plant Physiol. 123, 1571-1581. https://doi.org/10.1104/pp.123.4.1571
  54. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876-4882.
  55. Ulmasov, T., Hagen, G. and Guilfoyle, T. J. (1999) Dimerization and DNA binding of auxin response factors. Plant J. 19, 309-319. https://doi.org/10.1046/j.1365-313X.1999.00538.x
  56. Vallee, B. L. (1991) Introduction to metallothionein. Methods Enzymol. 205, 3-7. https://doi.org/10.1016/0076-6879(91)05077-9
  57. van der Meer, I. M., Brouwer, M., Spelt, C. E., Mol, J. N. M. and Stuitje, A. R. (1992) The TACPyAT repeats in the chalcone synthase promoter of Petunia hybrida act as a dominant negative cis-acting module in the control of organ-specific expression. Plant J. 2, 525-535.
  58. Vasak, M. and Hasler, D. W. (2000) Metallothioneins: new functional and structural insights. Curr. Opin. Chem. Biol. 4, 177-183. https://doi.org/10.1016/S1367-5931(00)00082-X
  59. Whitelaw, C. A., Le Huquet, J. A., Thurman, D. A. and Tomsett, A. B. (1997) The isolation and characterization of type II metallothionein-like genes from tomato (Lycopersicon esculentum L.). Plant Mol. Biol. 33, 503-511. https://doi.org/10.1023/A:1005769121822
  60. Wong, H. L., Sakamoto, T., Kawasaki, T., Umemura, K. and Shimamoto, K. (2004) Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol. 135, 1447-1456. https://doi.org/10.1104/pp.103.036384
  61. Xu, N., Hagen, G. and Guilfoyle, T. (1997) Multiple auxin response modules in the soybean SAUR 15A promoter. Plant Sci. 126, 193-201. https://doi.org/10.1016/S0168-9452(97)00110-6
  62. Xu, Y., Yu, H. and Hall, T. C. (1995) Rice triosephosphate isomerase gene 5'sequence directs beta-glucuronidase activity in transgenic tobacco but requires an intron for expression in rice. Plant Physiol. 106, 459-467.
  63. Yu, L. H., Umeda, M., Liu, J. Y., Zhao, N. M. and Uchimiya, H. (1998) A novel MT gene of rice plants is strongly expressed in the node portion of the stem. Gene 206, 29-35. https://doi.org/10.1016/S0378-1119(97)00577-5
  64. Zhou, G. K., Xu, Y. F. and Liu, J. Y. (2005) Characterization of a rice class II metallothionein gene: tissue expression patterns and induction in response to abiotic factors. J. Plant Physiol. 162, 686-696. https://doi.org/10.1016/j.jplph.2004.11.006
  65. Zhou, J. and Goldsbrough, P. B. (1995) Structure, organization and expression of the metallothionein gene family in Arabidopsis. Mol. Gen. Genet. 248, 318-328. https://doi.org/10.1007/BF02191599

Cited by

  1. Isolation and characterization of a metallothionein-1 protein in Chloris virgata Swartz that enhances stress tolerances to oxidative, salinity and carbonate stress in Saccharomyces cerevisiae vol.29, pp.8, 2007, https://doi.org/10.1007/s10529-007-9396-4
  2. Exogenous Supplementation of Silicon Improved the Recovery of Hyperhydric Shoots in Dianthus caryophyllus L. by Stabilizing the Physiology and Protein Expression vol.8, 2017, https://doi.org/10.3389/fpls.2017.00738
  3. Characterization of a Novel Rice Metallothionein Gene Promoter: Its Tissue Specificity and Heavy Metal Responsiveness vol.52, pp.10, 2010, https://doi.org/10.1111/j.1744-7909.2010.00966.x
  4. The response of the different soybean metallothionein isoforms to cadmium intoxication vol.117, 2012, https://doi.org/10.1016/j.jinorgbio.2012.08.020
  5. The promoter and the 5′-untranslated region of rice metallothionein OsMT2b gene are capable of directing high-level gene expression in germinated rice embryos vol.33, pp.5, 2014, https://doi.org/10.1007/s00299-013-1555-6
  6. Expressed sequence tags from the flower pathogenClaviceps purpurea vol.10, pp.5, 2009, https://doi.org/10.1111/j.1364-3703.2009.00560.x
  7. Functional characterization of a type 3 metallolthionein isoform (OsMTI-3a) from rice vol.73, 2015, https://doi.org/10.1016/j.ijbiomac.2014.10.067
  8. Cloning and characterization of HbMT2a, a metallothionein gene from Hevea brasiliensis Muell. Arg differently responds to abiotic stress and heavy metals vol.461, pp.1, 2015, https://doi.org/10.1016/j.bbrc.2015.03.175
  9. Barley metallothioneins differ in ontogenetic pattern and response to metals vol.37, pp.2, 2014, https://doi.org/10.1111/pce.12158
  10. Abiotic stress and genome dynamics: specific genes and transposable elements response to iron excess in rice vol.8, pp.1, 2015, https://doi.org/10.1186/s12284-015-0045-6
  11. Characterization of a type 3 metallothionein isolated from Porteresia coarctata vol.55, pp.1, 2011, https://doi.org/10.1007/s10535-011-0016-8
  12. Functional Characterisation of the Oil Palm Type 3 Metallothionein-like Gene (MT3-B) Promoter vol.28, pp.3, 2010, https://doi.org/10.1007/s11105-009-0177-1
  13. Influence of selenium on metallothionein gene expression and physiological characteristics of sugarcane plants vol.77, pp.2, 2015, https://doi.org/10.1007/s10725-015-0042-1
  14. Identification of a set of genes from genotypes of common bean tolerant and susceptible to water stress for a macroarray-based selection strategy vol.60, pp.3, 2016, https://doi.org/10.1007/s10535-016-0587-5
  15. Arabidopsis thaliana Metallothionein, AtMT2a, Mediates ROS Balance during Oxidative Stress vol.52, pp.6, 2009, https://doi.org/10.1007/s12374-009-9076-0
  16. Bioinformatics analysis of metallothionein gene from <i>Agaricus bisporus, Ganoderma lucidum, Taiwanofungus camphorates</i> and <i>Paxillus involutus</i> vol.03, pp.07, 2012, https://doi.org/10.4236/as.2012.37109
  17. Heavy metal and abiotic stress inducible metallothionein isoforms from Prosopis juliflora (SW) D.C. show differences in binding to heavy metals in vitro vol.281, pp.1, 2009, https://doi.org/10.1007/s00438-008-0398-2
  18. Expression patterns of the rice class I metallothionein gene family in response to lead stress in rice seedlings and functional complementation of its members in lead-sensitive yeast cells vol.52, pp.16, 2007, https://doi.org/10.1007/s11434-007-0335-5
  19. Metal inducible activity of the oil palm metallothionein-like gene promoter (MT3-A) in prokaryotes vol.111, pp.2, 2011, https://doi.org/10.1016/j.jbiosc.2010.09.010
  20. Expression of the rgMT gene, encoding for a rice metallothionein-like protein in Saccharomyces cerevisiae and Arabidopsis thaliana vol.93, pp.3, 2014, https://doi.org/10.1007/s12041-014-0430-8
  21. Copper-induced hydrogen peroxide upregulation of a metallothionein gene, OsMT2c, from Oryza sativa L. confers copper tolerance in Arabidopsis thaliana vol.294, 2015, https://doi.org/10.1016/j.jhazmat.2015.03.060
  22. Analysis of the expression of putative heat-stress related genes in relation to thermotolerance of cork oak vol.171, pp.6, 2014, https://doi.org/10.1016/j.jplph.2013.12.004
  23. Genome-wide identification of rice class I metallothionein gene: tissue expression patterns and induction in response to heavy metal stress vol.12, pp.4, 2012, https://doi.org/10.1007/s10142-012-0297-9
  24. Silicon Enhanced Redox Homeostasis and Protein Expression to Mitigate the Salinity Stress in Rosa hybrida ‘Rock Fire’ 2017, https://doi.org/10.1007/s00344-017-9705-7
  25. Characterization of a rice metallothionein type 3 gene with different expression profiles under various nitrogen forms vol.52, pp.4, 2008, https://doi.org/10.1007/s10535-008-0129-x
  26. Leaf Physiological and Proteomic Analysis to Elucidate Silicon Induced Adaptive Response under Salt Stress in Rosa hybrida ‘Rock Fire’ vol.18, pp.8, 2017, https://doi.org/10.3390/ijms18081768
  27. In vivo analysis of metal distribution and expression of metal transporters in rice seed during germination process by microarray and X-ray Fluorescence Imaging of Fe, Zn, Mn, and Cu vol.325, pp.1-2, 2009, https://doi.org/10.1007/s11104-009-0045-7
  28. Rice genes involved in phytosiderophore biosynthesis are synchronously regulated during the early stages of iron deficiency in roots vol.6, pp.1, 2013, https://doi.org/10.1186/1939-8433-6-16
  29. Molecular cloning and characterisation of metallothionein type 2a gene from Jatropha curcas L., a promising biofuel plant vol.41, pp.1, 2014, https://doi.org/10.1007/s11033-013-2843-5
  30. HbMT2, an ethephon-induced metallothionein gene from Hevea brasiliensis responds to H2O2 stress vol.48, pp.8, 2010, https://doi.org/10.1016/j.plaphy.2010.04.004
  31. Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging vol.12, pp.1, 2012, https://doi.org/10.1186/1471-2229-12-107
  32. Progress studies of drought-responsive genes in rice vol.30, pp.3, 2011, https://doi.org/10.1007/s00299-010-0956-z
  33. Transcriptional profiling in cadmium-treated rice seedling roots using suppressive subtractive hybridization vol.50, 2012, https://doi.org/10.1016/j.plaphy.2011.07.015
  34. Spatial transcriptomes of iron-deficient and cadmium-stressed rice vol.201, pp.3, 2014, https://doi.org/10.1111/nph.12577
  35. Antioxidant defense gene analysis in Brassica oleracea and Trifolium repens exposed to Cd and/or Pb vol.23, pp.4, 2016, https://doi.org/10.1007/s11356-015-5636-7
  36. Molecular Mechanism of Heavy Metal Toxicity and Tolerance in Plants: Central Role of Glutathione in Detoxification of Reactive Oxygen Species and Methylglyoxal and in Heavy Metal Chelation vol.2012, 2012, https://doi.org/10.1155/2012/872875
  37. Type 4 metallothionein genes are involved in regulating Zn ion accumulation in late embryo and in controlling early seedling growth in Arabidopsis vol.35, pp.4, 2012, https://doi.org/10.1111/j.1365-3040.2011.02450.x
  38. H2O2 Is Involved in the Metallothionein-Mediated Rice Tolerance to Copper and Cadmium Toxicity vol.18, pp.10, 2017, https://doi.org/10.3390/ijms18102083