DOI QR코드

DOI QR Code

Interaction of Native and Apo-carbonic Anhydrase with Hydrophobic Adsorbents: A Comparative Structure-function Study

  • Salemi, Zahra (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Hosseinkhani, Saman (Department of Biochemistry, Faculty of Basic Science, Tarbiat Modarres University) ;
  • Ranjbar, Bijan (Department of Biochemistry, Faculty of Basic Science, Tarbiat Modarres University) ;
  • Nemat-Gorgani, Mohsen (Institute of Biochemistry and Biophysics, University of Tehran)
  • Received : 2006.04.04
  • Accepted : 2006.06.14
  • Published : 2006.09.30

Abstract

Our previous studies indicated that native carbonic anhydrase does not interact with hydrophobic adsorbents and that it acquires this ability upon denaturation. In the present study, an apo form of the enzyme was prepared by removal of zinc and a comparative study was performed on some characteristic features of the apo and native forms by far- and near-UV circular dichroism (CD), intrinsic fluorescent spectroscopy, 1-anilino naphthalene-8-sulfonate (ANS) binding, fluorescence quenching by acrylamide, and Tm measurement. Results indicate that protein flexibility is enhanced and the hydrophobic sites become more exposed upon conversion to the apo form. Accordingly, the apo structure showed a greater affinity for interaction with hydrophobic adsorbents as compared with the native structure. As observed for the native enzyme, heat denaturation of the apo form promoted interaction with alkyl residues present on the adsorbents and, by cooling followed by addition of zinc, catalytically-active immobilized preparations were obtained.

Keywords

References

  1. Azari, F., Hosseinkhani, S. and Nemat-Gorgani, M. (2001) Use of reversible denaturation for adsorptive immobilization of Urease. Appl. Biochem. Biotechnol. 94, 265-277. https://doi.org/10.1385/ABAB:94:3:265
  2. Azari, F. and Nemat-Gorgani, M. (1999) Reversible denaturation of carbonic anhydrase provides a method for its adsorptive immobilization. Biotechnol. Bioeng. 62, 193-197. https://doi.org/10.1002/(SICI)1097-0290(19990120)62:2<193::AID-BIT9>3.0.CO;2-H
  3. Cleland, J. L. and Wang D. I. C. (1990) Refolding and aggregation of bovine carbonic anhydrase B: Quasi-elastic light scattering analysis. Biochemistry 29, 11072-11078. https://doi.org/10.1021/bi00502a009
  4. Coleman, J. E. (1968) Carbonic anhydrase-azosulfonamide complexes. J. Biol. Chem. 243, 4574-4587.
  5. d'Amico, S., Marx, J. C., Gerday, C. and Feller, G. (2003) Activity-stability relationships in extremophilic enzymes. J. Biol. Chem. 278, 7891-7896. https://doi.org/10.1074/jbc.M212508200
  6. Eftink, M. R. and Ghiron, C. A. (1976) Exposure of tryptophanyl residues and protein dynamics. Biochemistry 16, 5546-5551. https://doi.org/10.1021/bi00644a024
  7. Hakansson, K., Carlsson, M., Svensson, L. A. and Liljas, A. (1992) Structure of native and apo carbonic anhydrase II and structure of some of its anion-ligand complexes. J. Mol. Biol. 227, 1192-1204. https://doi.org/10.1016/0022-2836(92)90531-N
  8. Henkens, R. W. and Sturtevant, J. M. (1968) The kinetics of the binding of zinc (II) by apocarbonic anhydrase. J. AM. Chem. Soc. 90, 2669-2676. https://doi.org/10.1021/ja01012a036
  9. Henkens, R. W., Watt, G. D. and Sturtevant, J. M. (1969) The enthalpy of binding of various transition metal ions to bovine apocarbonic anhydrase. Biochemistry 8, 1874-1878. https://doi.org/10.1021/bi00833a015
  10. Holm, R. H., Kennepohl, P. and Solomon, E. I. (1996) Structural and functional aspects of metal sites in biology. Chem.Rev. 96, 2239-2314. https://doi.org/10.1021/cr9500390
  11. Hosseinkhani, S. and Nemat-Gorgani, M. (2003) Partial unfolding of carbonic anhydrase provides a method for its immobilization on hydrophobic adsorbents and protects it against irreversible thermoinactivation. Enzyme. Microb. Technol. 33, 179-184. https://doi.org/10.1016/S0141-0229(03)00097-8
  12. Hosseinkhani, S., Szittner, R., Nemat-Gorgani, M. and Meighen, E. (2003) Adsorptive immobilization of bacterial luciferases on alkyl-substituted Sepharose 4B. Enzyme Microb.Technol. 32, 186-193. https://doi.org/10.1016/S0141-0229(02)00282-X
  13. Hughson, F. M., Barrick, D. and Baldwin, R. L. (1991) Probing the stability of a partly folded apomyoglobin intermediate by site-directed mutagenesis. Biochemistry 30, 4113-4118. https://doi.org/10.1021/bi00231a001
  14. Hunt, J. A., Ahmed, M. and Fierke, C. A. (1999) Metal binding specificity in carbonic anhydrase is influenced by conserved hydrophobic core residues. Biochemistry 38, 9054-9062. https://doi.org/10.1021/bi9900166
  15. Ikai, A., Tanaka, S. and Noda, H. (1978) Reactivation kinetics of guanidine-denatured bovine carbonic anhydrase B. Arch. Biochem. Biophys. 190, 39-45. https://doi.org/10.1016/0003-9861(78)90251-5
  16. Lindberg, M. J., Tibell, L. and Oliveberg, M. (2002) Common denominator of Cu/Zn superoxide dismutase mutants associated with amyotrophic lateral sclerosis: Decreased stability of the apo state. P.N.A.S. 99, 16607-16612. https://doi.org/10.1073/pnas.262527099
  17. Lindskog, S., Henderson, L. E., Kannan, K. K., Liljas, A., Nyman, P. O. and Strandberg, B. (1971) Carbonic anhydrase; in The Enzymes, Boyer, P. D. (ed.), pp. 587-665, Academic Press, New York, USA.
  18. Lindskog, S. and Malmstrom, G. (1960) Reversible dissociation of zinc in bovine carbonic anhydrase. Biochem. Biophys. Res. Commun. 2, 213-217. https://doi.org/10.1016/0006-291X(60)90015-2
  19. Lindskog, S. and Malmstrom, B.G. (1962) Metal binding and catalytic activity in bovine carbonic anhydrase. J. Biol. Chem. 237, 1129-1137.
  20. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) Protein measurement with folin phenol reagent. J. Biol. Chem. 193, 265-275.
  21. McLachlan, K. L. and Crumbliss, A. L. (1991) The effect of an applied potential activity of carbonic anhydrase immobilized on graphite rods. Biotechnol. Bioeng. 37, 491-496. https://doi.org/10.1002/bit.260370511
  22. Miroliaei, M. and Nemat-Gorgani, M. (2001) Sugars protect native and apo yeast alcohol dehydrogenase against irreversible thermoinactivation. Enzyme. Microb. Technol. 29, 554-559. https://doi.org/10.1016/S0141-0229(01)00428-8
  23. Mitaku, S., Ishido, S., Itoh, H., Kataoka, R. and Saito, N. (1991) Hydrophobic core of molten globule state of bovine carbonic anhydrase B. Biophy. Chem. 40, 217-222. https://doi.org/10.1016/0301-4622(91)80021-I
  24. Nemat-Gorgani, M. and Karimian, K. (1982) Non-ionic adsorptive immobilization of proteins to palmityl-substituted Sepharose 4B. Eur. J. Biochem. 123, 601-609. https://doi.org/10.1111/j.1432-1033.1982.tb06575.x
  25. Ptitsyn, O. B., Pain, R. H., Semisotnov, G. V., Zerovnik, E. and Razgulyaev, O. I. (1990) Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett. 262, 20-24. https://doi.org/10.1016/0014-5793(90)80143-7
  26. Rajaraman, K., Raman, B. and Rao, C. M. (1996) Molten-globule state of carbonic anhydrase binds to the chaperon-like ácrystallin. J. Biol. Chem. 271, 27595-27600. https://doi.org/10.1074/jbc.271.44.27595
  27. Scott, D. A. and Mendiv, J. R. (1941) Chemical observations on carbonic anhydrase. J. Biol .Chem. 140, 445-451.
  28. Thompson, R. B. and Patchan, M. W. (1995) Lifetime-based fluorescence energy transfer biosensing of zinc. Anal. Biochem. 227, 123-128. https://doi.org/10.1006/abio.1995.1260
  29. Thompson, R. B., Maliwal, B. P. and Zeng, H. H. (2000) Zinc biosensing with multiphoton excitation using carbonic anhydrase and improved fluorophores. J. Biomed. Optics 5, 17-22. https://doi.org/10.1117/1.429963
  30. Tupper, R., Watts, R. W. and Wormall, A. (1952) Some observations on the zinc in carbonic anhydrase. Biochem. J. 50, 425-429. https://doi.org/10.1042/bj0500425
  31. Uversky, V. N., Semisotnov, G. V., Pain, R. H. and Ptitsyn, O. B. (1992) 'All-or-none' mechanism of the molten-globule unfolding. FEBS Lett. 314, 89-92. https://doi.org/10.1016/0014-5793(92)81468-2
  32. Varley, P. G. and Pain, R. H. (1991) Relation between stability, dynamics and enzyme activity in 3-phosphoglycerate kinases from yeast and Thermus thermophilus. J. Mol. Biol. 220, 531-538. https://doi.org/10.1016/0022-2836(91)90028-5
  33. Waygood, E. R. (1955) Carbonic anhydrase (plant and animal). Meth Enzymol. 2, 836-846. https://doi.org/10.1016/S0076-6879(55)02312-4
  34. Zhang, Y. L., Zhou, J. M. and Tsou, C. L. (1993) Inactivation procedes conformation change during thermal denaturation of adenylate kinase. Biochem. Biophys. Acta 1164, 61-67. https://doi.org/10.1016/0167-4838(93)90112-5

Cited by

  1. Hydrophobic Interactions in Complexes of Antimicrobial Peptides with Bacterial Polysaccharides vol.69, pp.6, 2007, https://doi.org/10.1111/j.1747-0285.2007.00518.x
  2. Thermal stability of carbonic anhydrase immobilized within polyurethane foam vol.26, pp.5, 2010, https://doi.org/10.1002/btpr.452
  3. Transition metal complexes of 2, 6-di ((phenazonyl-4-imino) methyl)-4-methylphenol: Structure and biological evaluation vol.46, pp.5, 2011, https://doi.org/10.1016/j.ejmech.2011.02.012
  4. Spectroscopic studies on the interaction between Pr(III) complex of an ofloxacin derivative and bovine serum albumin or DNA vol.78, pp.1, 2011, https://doi.org/10.1016/j.saa.2010.11.018
  5. Binding of rare earth metal complexes with an ofloxacin derivative to bovine serum albumin and its effect on the conformation of protein vol.131, pp.8, 2011, https://doi.org/10.1016/j.jlumin.2011.03.025