DOI QR코드

DOI QR Code

Silymarin Modulates Cisplatin-Induced Oxidative Stress and Hepatotoxicity in Rats

  • Mansour, Heba Hosny (Health Radiation Research Department, National Center for Radiation Research and Technology) ;
  • Hafez, Hafez Farouk (Pharmacology Unit, National Cancer Institute, Cairo University) ;
  • Fahmy, Nadia Mohamed (Health Radiation Research Department, National Center for Radiation Research and Technology)
  • Received : 2006.03.02
  • Accepted : 2006.05.23
  • Published : 2006.11.30

Abstract

Cisplatin (CDDP) is a widely used anticancer drug, but at high dose, it can produce undesirable side effects such as hepatotoxicity. Because silymrin has been used to treat liver disorders, the protective effect of silymarin on CDDP -induced hepatotoxicity was evaluated in rats. Hepatotoxicity was determined by changes in serum alanine aminotransferase [ALT] and aspartate aminotransferase [AST], nitric oxide [NO] levels, albumin and calcium levels, and superoxide dismutase [SOD], glutathione peroxidase [GSHPx] activities, glutathione content, malondialdehyde [MDA] and nitric oxide [NO] levels in liver tissue of rats. Male albino rats were divided into four groups, 10 rats in each. In the control group, rats were injected i.p. with 0.2 ml of propylene glycol in saline 75/25 (v/v) for 5 consecutive days [Silymarin was dissolved in 0.2 ml of propylene glycol in saline 75/25 v/v]. The second group were injected with CDDP (7.5 mg /kg, I.P.), whereas animals in the third group were i.p. injected with silymarin at a dose of 100 mg/kg/day for 5 consecutive days. The Fourth group received a daily i.p. injection of silymarin (100 mg/kg/day for 5 days) 1 hr before a single i.p. injection of CDDP (7.5 mg/kg). CDDP hepatotoxicity was manifested biochemically by an increase in serum ALT and AST, elevation of MDA and NO in liver tissues as well as a decrease in GSH and the activities of antioxidant enzymes, including SOD, GSHPx in liver tissues. In addition, marked decrease in serum NO, albumin and calcium levels were observed. Serum ALT, AST, liver NO level, MDA was found to decreased in the combination group in comparison with the CDDP group. The activities of SOD, GSHPx, GSH and serum NO were lower in CDDP group than both the control and CDDP pretreated with silymarin groups. The results obtained suggested that silymarin significantly attenuated the hepatotoxicity as an indirect target of CDDP in an animal model of CDDP-induced nephrotoxicity.

Keywords

References

  1. Abu Ghadeer, A. R., Ali, S. E., Osman, S. A., Abu Bedair, F. A., Abbady, M. M. and El-Kady, M. R. (2001) Antagonistic role of silymarin against cardiotoxicity and impaired antioxidant induced by adriamycin and/or radiation exposure in albino rats. Pakistan J. Biol. Sci. 4, 604-607 https://doi.org/10.3923/pjbs.2001.604.607
  2. Ahmed, B., Khan, S. A. and Alam, T. (2003) Synthesis and antihepatotoxic activity of some heterocyclic compounds containing the 1, 4-dioxane ring system. Pharmazie. 58, 173- 176
  3. Antunes, G. L. M., Darin, J. D. and Bianchi, M. D. (2000) Protective effects of vitamin C against cisplatin-induced nephrotoxicity and lipid peroxidation in adult rats: a dosedependent study. Pharmacol. Res. 41, 405-411 https://doi.org/10.1006/phrs.1999.0600
  4. Borsari, M., Gabbi, C., Ghelfi, F., Grandi, R., Saladini, M., Severi, S. and Borella, F. (2001) Silybin, a new iron-chelating agent. J. Inorg. Biochem. 85, 123-129 https://doi.org/10.1016/S0162-0134(01)00198-2
  5. Buege, J. A. and Aust, S. D. (1978) Microsomal lipid peroxidation. Methods Enzymol. 52, 302-310 https://doi.org/10.1016/S0076-6879(78)52032-6
  6. Chavez, E. and Bravo, C. (1988) Silymarin-induced mitochondrial Ca2+ release. Life Sci. 43, 975-981 https://doi.org/10.1016/0024-3205(88)90542-5
  7. Crocenzi, F. A., Sanchez Pozzi, E. J., Pellegrino, J. M., Rodriguez Garay, E. A., Mottino, A. D. and Roma, M. G. (2003) Preventive effect of silymarin against taurolithocholate-induced cholestasis in the rat. Biochem. Pharmacol. 66, 355-364 https://doi.org/10.1016/S0006-2952(03)00253-3
  8. Curran, R. D., Ferrari, F. K., Kispert, P. H., Stadler, J., Stuehr, D. J., Simmons, R. L. and Billiar, T. R. (1991) Nitric oxide and nitric oxide-generating compounds inhibit hepatocyte protein synthesis. FASEB J. 5, 2085-2092 https://doi.org/10.1096/fasebj.5.7.1707021
  9. Dubskaia, T. L. U., Vetoshkina, T. V. and Gol'dberg, V. E. (1994) The mechanisms of the hepatotoxicity of complex platinum compounds. Eksp. Klin. Farmakol. 57, 38-41
  10. Ellman, G. L. (1959) Tissue sulfhydryl groups. Arch. Biochem. Biophys. 17, 214-226
  11. Emerit, J., Beaumont, C. and Trivin, F. (2001) Iron metabolism, free radicls and oxidative injury. Biomed Pharmacother. 55, 333-339 https://doi.org/10.1016/S0753-3322(01)00068-3
  12. Grau, J. J., Estape, J., Cuchi, M. A., Firvida, J. L., Blanch, J. L. and Ascaso, C. (1996) Calcium supplementation and ototoxicity in patients receiving cisplatin. Br. J. Clin. Pharmacol. 42, 233-235 https://doi.org/10.1046/j.1365-2125.1996.39114.x
  13. Hakova, H., Misurova, E. and Kropacova, R. (1996) The effect of silymarin on the concentration and total content of nucleic acids in tissues of continuously irradiated rats. Vet. Med. (Praha) 41, 113-119
  14. Hasegawa, T., Kaneko, F. and Niwa, Y. (1992) Changes in lipid peroxide levels and activity of reactive oxygen scavenging enzymes in skin, serum and liver following UVB irradiation in mice. Life Sci. 50, 1893-1903 https://doi.org/10.1016/0024-3205(92)90550-9
  15. Ignarro, L., Buga, G., Wood, K., Byrns, R. E. and Chaudhuri, G. (1987) Endothelium-derived relaxing factor produced and released from artery and veins is nitric oxide. Proc. Nat. Acad. Sci. 84, 9265-9269 https://doi.org/10.1073/pnas.84.24.9265
  16. Kadikoylu, G., Bolaman, Z., Demir, S., Balkaya, M., Akalin, N. and Enli, Y. (2004) The effects of desferrioxamine on cisplatininduced lipid peroxidation and the activities of antioxidant enzymes in rat kidneys. Hum Exp Toxicol. 23, 29-34 https://doi.org/10.1191/0960327104ht413oa
  17. Kang, J. S., Jeon, Y. J., Park, S. K., Yang, K. H. and Kim, H. M. (2004) Protection against lipopolysaccharide-induced sepsis and inhibition of interleukin-1 beta and prostaglandin E2 synthesis by silymarin. Biochem. Pharmacol. 67, 175-181 https://doi.org/10.1016/j.bcp.2003.08.032
  18. Kim, S. H., Hong, K. O., Chung, W. Y., Hwang, J. K. and Park, K. K. (2004) Abrogation of cisplatin-induced hepatotoxicity in mice by xanthorrhizol is related to its effect on the regulation of gene transcription. Toxicol. Appl. Pharmacol. 196, 346-355 https://doi.org/10.1016/j.taap.2004.01.002
  19. Klukowska, L., Nadulska, A. and Dyba, S. (2001) The influence of cisplatinum and goserelinum on the magnesium and calcium level in rat serum. Ann. Univ. Mariae Curie Sklodowska [Med]. 56, 483-486
  20. Koc, A., Duru, M., Ciralik, H., Akcan, R. and Sogut, S. (2005): Protective agent, erdosteine, against cisplatin-induced hepatic oxidant injury in rats. Mol. Cell Biochem. 278, 79-84 https://doi.org/10.1007/s11010-005-6630-z
  21. Laekeman, G., De Coster, S., De Meyer, K. and Leuven, K. U. (2003) St. Mary's Thistle: an overview. J. Pharm. Belg. 58, 28- 31
  22. Lawrence, R. A. and Burk, R. F. (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem. Biophys. Res. Commun. 71, 952-958 https://doi.org/10.1016/0006-291X(76)90747-6
  23. Lee, T. Y., Mai, L. M., Wang, G. J., Chiu, J. H., Lin, Y. L. and Lin, H. C. (2003) Protective mechanism of salvia miltiorrhiza on carbon tetrachloride-induced acute hepatotoxicity in rats. J. Pharmacol. Science 91, 202-210 https://doi.org/10.1254/jphs.91.202
  24. Medina, J. and Moreno-Otero, R. (2005) Pathophysiological basis for antioxidant therapy in chronic liver disease. Drugs 65, 2445-2461 https://doi.org/10.2165/00003495-200565170-00003
  25. Mereish, K. A., Bunner, D. L., Regland, D. R. and Creasia, D. A. (1991) Protection against microcystin-L. R. induced hepatotoxicity by silymarin: biochemistry, histopathology and lethality. Pharmacol. Res. 8, 257-277
  26. Minami, M. and Yoshikawa, H. (1979) A simplified assay method of superoxide dismutase activity for clinical use. Clin. Chim. Acta 92, 337-342 https://doi.org/10.1016/0009-8981(79)90211-0
  27. Mira, L., Silva, M. and Manso, C. F. (1994) Scavenging of reactive oxygen species by silibin dihemisuccinate. Biochem. Pharmacol. 48, 753-759 https://doi.org/10.1016/0006-2952(94)90053-1
  28. Naveau S. (2001) Acute alcoholic hepatitis treatments. Press Med. 30, 1024-1030
  29. Pratibha, R., Sameer, R., Rataboli, P. V., Bhiwgade, D. A. and Dhume, C. Y. (2006) Enzymatic studies of cisplatin induced oxidative stress in hepatic tissue of rats. Eur. J. Pharmacol. 532, 290-293 https://doi.org/10.1016/j.ejphar.2006.01.007
  30. Ramadan, L. A., El-Habit, O. H., Arafa, H. and Sayed-Ahmed, M. M. (2001) Effect of cremophor-el on cisplatin-induced organ toxicity in normal rat. J. Egyptian Nat. Cancer Inst. 13, 139- 145
  31. Ramadan, L., Roushdy, H. M., Abu Senna, G. M., Amin, N. E. and El-Deshw, O. A. (2002) Radioprotectve effect of silymarin against radiation induced hepatotoxicity. Pharmacol. Res. 45, 447-452 https://doi.org/10.1006/phrs.2002.0990
  32. Reitman, S. and Frankel, S. A. (1957) A colourimetric method for the determination of serum oxaloaetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 28, 56-63 https://doi.org/10.1093/ajcp/28.1.56
  33. Rhoden, E. L., Lucas, M. L., Pereira-Lima, L., Rhoden, C. R. and Souto, C. A. (2001) Effects of L-arginine on the kidney levels of malondialdehyde in rats submitted to renal ischaemiareperfusion. BJU Int. 88, 273-277 https://doi.org/10.1046/j.1464-410x.2001.02303.x
  34. Saad, S. Y., Najjar, T. A. and Alashari, M. (2004) Role of nonselective adenosine receptor blockade and phosphodiesterase inhibition in cisplatin-induced nephrogonadal toxicity in rats. Clin. Exp. Pharmacol Physiol. 31, 862-867 https://doi.org/10.1111/j.1440-1681.2004.04127.x
  35. Saad, S. Y., Najjar, T. A., Daba, M. H. and Al-Rikabi, A. C. (2002) Inhibition of nitric oxide synthase aggravates cisplatininduced nephrotoxicity: effect of 2-amino-4-methylpyridine. Chemotherapy 48, 309-315 https://doi.org/10.1159/000069714
  36. Saad, S. Y., Najjar, T. A., Noreddin, A. M. and Al-Rikabi, A. C. (2001) Effects of gemcitabine on cisplatin-induced nephrotoxicity in rats: schedule-dependent study. Pharmacol. Res. 43, 193- 198 https://doi.org/10.1006/phrs.2000.0764
  37. Sayed-Ahmed, M. M., Khattab, M. M., Gad, M. Z. and Osman, A. M. (2004) Increased plasma endothelin-1 and cardiac nitric oxide during doxorubicin-induced cardiomyopathy. Pharmacol. Toxicol. 89, 140-144 https://doi.org/10.1111/j.1600-0773.2001.890305.x
  38. Singh, R. P. and Agarwal, R. (2002) Flavonoid antioxidant silymarin and skin cancer. Antioxid. Redox Signal. 4, 655-663 https://doi.org/10.1089/15230860260220166
  39. Son, K. (1997) Cisplatin-based interferon gamma gene-therapy of murine ovarian carcinoma. Cancer Gene Ther. 4, 391-396
  40. Son, K. and Kim, Y. M. (1995) In vivo cisplatin-exposed macrophages increase immunostimulant-induced nitric oxide synthesis for tumor synthesis for tumor cell killing. Cancer Res. 55, 5524-5527
  41. Soto, C., Recoba, R., Barron H., Alvarez, C. and Favari, L. (2003) Silymarin increases antioxidant enzymes in alloxan-induced diabetes in rat pancreas. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 136, 205-212 https://doi.org/10.1016/S1532-0456(03)00214-X
  42. Valenzuela, A., Monica, A., Soledad, V. and Ricardo, G. (1989) Selectivity of silymarin on the increase of the glutathione content in different tissues of the rats. Planta Med. 55, 420- 422 https://doi.org/10.1055/s-2006-962056
  43. Wang, G., Reed, E. and Li, Q. Q. (2004) Molecular basis of cellular response to cisplatin chemotherapy in non-small cell lung cancer. Oncol. Rep. Nov. 12, 955-965
  44. Wink, A. D., Cook, J. A., Christodoulou, D., Krishna, M. C., Pacelli, R., Kim S., DeGraff, W., Gamson, J., Vodovotz, Y., Russo, A. and Mitchell, J. B. (1997) Nitric oxide and some nitric oxide donor compounds enhance the cytotoxicity of cisplatin. Nitric Oxide 1, 88-94 https://doi.org/10.1006/niox.1996.0108
  45. Wrenn, H. T. and Feichtmeir, T. V. (1956) The quantitation of albumin based on dye linear binding capacity. Am. J. Clin. Pathol. 26, 960-968 https://doi.org/10.1093/ajcp/26.8_ts.960
  46. Yilmaz, H. R., Sogut, S., Ozyut, B., Ozugurlu, F., Sahin, S., Isik, B., Uz, E. and Ozyurt, H. (2005) The activities of liver adenosine deaminase, xanthine oxidase, catalase, superoxide dismutase enzymes and the levels of malondialdehyde and nitric oxide after cisplatin toxicity in rats: protective effect of caffeic acid phenethyl ester. Toxicol. Ind. Health. 213, 67-73
  47. Zhang, J. and Lindup, W. E. (1996) Cisplatin-induced nephrotoxicity in vitro: increase in cystolic calcium concentration and the inhibition of cystolic and mitochondrial protein kinase C. Toxicol. Lett. 89, 11-17 https://doi.org/10.1016/S0378-4274(96)03776-9
  48. Zicca, A., Cafaggi, S., Mariggio, M. A., Vannozzi, M. O., Ottone, M., Bocchini, V., Caviglioli, G. and Viale, M. (2004) Reduction of cisplatin hepatotoxicity by procainamide hydrochloride in rats. Eur. J. Pharmacol. 442, 265-272 https://doi.org/10.1016/S0014-2999(02)01537-6

Cited by

  1. Mirtazapine protects against cisplatin-induced oxidative stress and DNA damage in the rat brain vol.67, pp.1, 2013, https://doi.org/10.1111/j.1440-1819.2012.02395.x
  2. Effect of glutathione combined with cisplatin and oxaliplatin on the proliferation and apoptosis of lung carcinoma cell line vol.20, pp.8, 2010, https://doi.org/10.3109/15376516.2010.508081
  3. Nephroprotective efficacy of chrysin against cisplatin-induced toxicity via attenuation of oxidative stress vol.64, pp.6, 2012, https://doi.org/10.1111/j.2042-7158.2012.01470.x
  4. Aged garlic extract protects against oxidative stress and renal changes in cisplatin-treated adult male rats vol.14, pp.1, 2014, https://doi.org/10.1186/s12935-014-0092-x
  5. Protective Effect of Royal Jelly and Green Tea Extracts Effect Against Cisplatin-Induced Nephrotoxicity in Mice: A Comparative Study vol.12, pp.5, 2009, https://doi.org/10.1089/jmf.2009.0036
  6. Recombinant human erythropoietin prevents cisplatin-induced genotoxicity in rat liver and heart tissues via an antioxidant process vol.35, pp.2, 2012, https://doi.org/10.3109/01480545.2011.589445
  7. Silymarin prevents adriamycin-induced cardiotoxicity and nephrotoxicity in rats vol.46, pp.7, 2008, https://doi.org/10.1016/j.fct.2008.03.033
  8. Curcumin protects rats against acetaminophen-induced hepatorenal damages and shows synergistic activity with N-acetyl cysteine vol.628, pp.1-3, 2010, https://doi.org/10.1016/j.ejphar.2009.11.027
  9. Silymarin, a natural antioxidant, protects cerebral cortex against manganese-induced neurotoxicity in adult rats vol.23, pp.6, 2010, https://doi.org/10.1007/s10534-010-9345-x
  10. Curcuma Longa (Curcumin) Decreases In Vivo Cisplatin-Induced Ototoxicity Through Heme Oxygenase-1 Induction vol.35, pp.5, 2014, https://doi.org/10.1097/MAO.0000000000000302
  11. Effect of silymarin on cisplatin-induced renal tubular injuries in adult male rabbits vol.34, pp.4, 2011, https://doi.org/10.1097/01.EHX.0000407698.55603.e7
  12. Topical Use of a Silymarin-Based Preparation to Prevent Radiodermatitis vol.187, pp.8, 2011, https://doi.org/10.1007/s00066-011-2204-z
  13. Protective effect of grape seed proanthocyanidin extract against oxidative stress induced by cisplatin in rats vol.47, pp.6, 2009, https://doi.org/10.1016/j.fct.2009.02.007
  14. Protective Effects of Apocynin on Cisplatin-induced Hepatotoxicity in Rats vol.46, pp.7, 2015, https://doi.org/10.1016/j.arcmed.2015.08.005
  15. Silymarin exacerbates p53-mediated tubular apoptosis in glycerol-induced acute kidney injury in rats vol.32, pp.5, 2010, https://doi.org/10.3109/08860221003778064
  16. The Protective Effects of p-Coumaric Acid on Acute Liver and Kidney Damages Induced by Cisplatin vol.5, pp.2, 2017, https://doi.org/10.3390/biomedicines5020018
  17. Antioxidant and protective effects of silymarin on ischemia and reperfusion injury in the kidney tissues of rats vol.40, pp.2, 2008, https://doi.org/10.1007/s11255-008-9365-4
  18. Ameliorative Action of Curcumin in Cisplatin-mediated Hepatotoxicity: An In Vivo Study in Wistar Rats vol.45, pp.6, 2014, https://doi.org/10.1016/j.arcmed.2014.07.006
  19. Silymarin Ameliorates Cisplatin-Induced Hepatotoxicity in Rats: Histopathological and Ultrastructural Studies vol.13, pp.10, 2010, https://doi.org/10.3923/pjbs.2010.463.479
  20. Zingiber officinale acts as a nutraceutical agent against liver fibrosis vol.8, pp.1, 2011, https://doi.org/10.1186/1743-7075-8-40
  21. Synergism Between Propolis and Hyperthermal Intraperitoneal Chemotherapy with Cisplatin on Ehrlich Ascites Tumor in Mice vol.102, pp.12, 2013, https://doi.org/10.1002/jps.23755
  22. Effects of two weeks administration of Ocimum gratissimum leaf on feeding pattern and markers of renal function in rats treated with gentamicin vol.3, pp.3, 2016, https://doi.org/10.1016/j.ejbas.2016.07.002
  23. Chemopreventive effect of bilberry (Vaccinium myrtillus) against cisplatin-induced oxidative stress and DNA damage as shown by the comet assay in peripheral blood of rats vol.69, pp.6, 2014, https://doi.org/10.2478/s11756-014-0371-y
  24. Cisplatin in cancer therapy: Molecular mechanisms of action vol.740, 2014, https://doi.org/10.1016/j.ejphar.2014.07.025
  25. Hepatoprotective Effects of Pig Placental Hydrolysates on Liver Damage-induced Rats by Injecting Carbon Tetrachloride vol.55, pp.2, 2012, https://doi.org/10.3839/jabc.2011.067
  26. Resveratrol ameliorates cisplatin-induced oxidative injury in New Zealand rabbits vol.93, pp.8, 2015, https://doi.org/10.1139/cjpp-2014-0420
  27. Fabrication of poly(γ-glutamic acid)-based biopolymer as the targeted drug delivery system with enhanced cytotoxicity to APN/CD13 over-expressed cells vol.23, pp.5, 2015, https://doi.org/10.3109/1061186X.2014.1003139
  28. Sorghum [Sorghum bicolor(L.) Moench] Leaf Sheath Dye Protects Against Cisplatin-Induced Hepatotoxicity and Oxidative Stress in Rats vol.17, pp.12, 2014, https://doi.org/10.1089/jmf.2013.0013
  29. Licochalcone A Inhibits the Growth of Colon Carcinoma and Attenuates Cisplatin-Induced Toxicity without a Loss of Chemotherapeutic Efficacy in Mice vol.103, pp.1, 2008, https://doi.org/10.1111/j.1742-7843.2008.00238.x
  30. Preparation and electrochemical characteristics of electrodeposited acetaminophen on ruthenium oxide nanoparticles and its role as a sensor for simultaneous determination of ascorbic acid, dopamine and N-acetyl-l-cysteine vol.160, pp.1, 2011, https://doi.org/10.1016/j.snb.2011.10.012
  31. Cisplatin induces mitochondrial oxidative stress with resultant energetic metabolism impairment, membrane rigidification and apoptosis in rat liver vol.28, pp.3, 2008, https://doi.org/10.1002/jat.1284
  32. Hepatoprotective effect of Ficus religiosa latex on cisplatin induced liver injury in Wistar rats vol.25, pp.3, 2015, https://doi.org/10.1016/j.bjp.2015.03.012
  33. Effects of organoselenium compound 2-(5-selenocyanato-pentyl)-benzo[de]isoquinoline 1,3-dione on cisplatin induced nephrotoxicity and genotoxicity: an investigation of the influence of the compound on oxidative stress and antioxidant enzyme system vol.26, pp.1, 2013, https://doi.org/10.1007/s10534-012-9594-y
  34. Evaluation of nephroprotective, diuretic, and antioxidant activities ofplectranthus amboinicuson acetaminophen-induced nephrotoxic rats vol.20, pp.4, 2010, https://doi.org/10.3109/15376511003736787
  35. Drug–drug interactions of silymarin on the perspective of pharmacokinetics vol.121, pp.2, 2009, https://doi.org/10.1016/j.jep.2008.10.036
  36. Hepatoprotective activity of berberine is mediated by inhibition of TNF-α, COX-2, and iNOS expression in CCl4-intoxicated mice vol.280, pp.1-2, 2011, https://doi.org/10.1016/j.tox.2010.11.005
  37. Aged garlic extract ameliorates the oxidative stress, histomorphological, and ultrastructural changes of cisplatin-induced nephrotoxicity in adult male rats vol.78, pp.6, 2015, https://doi.org/10.1002/jemt.22494
  38. Silymarin selectively protects human renal cells from cisplatin-induced cell death vol.49, pp.10, 2011, https://doi.org/10.3109/13880209.2011.568506
  39. Protective effect of bilberry (Vaccinium myrtillus L.) on cisplatin induced ovarian damage in rat vol.66, pp.4, 2014, https://doi.org/10.1007/s10616-013-9621-z
  40. Dimethylthiourea protects against mitochondrial oxidative damage induced by cisplatin in liver of rats vol.170, pp.3, 2007, https://doi.org/10.1016/j.cbi.2007.07.014
  41. The Potential Role ofAzadirachta indicaTreatment on Cisplatin-Induced Hepatotoxicity and Oxidative Stress in Female Rats vol.2013, 2013, https://doi.org/10.1155/2013/741817
  42. Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives vol.4, pp.1, 2015, https://doi.org/10.3390/antiox4010204
  43. Ginsenoside Rg3 enhances the chemosensitivity of tumors to cisplatin by reducing the basal level of nuclear factor erythroid 2-related factor 2-mediated heme oxygenase-1/NAD(P)H quinone oxidoreductase-1 and prevents normal tissue damage by scavenging cisplatin-induced intracellular reactive oxygen species vol.50, pp.7, 2012, https://doi.org/10.1016/j.fct.2012.01.005
  44. Biochemical and ultrastructural studies on the protective effect of ginger extract against cisplatin-induced hepatotoxicity in adult male albino rats vol.34, pp.2, 2011, https://doi.org/10.1097/01.EHX.0000396639.02881.79
  45. Silymarin potentiates the antinociceptive effect of morphine in mice 2011, https://doi.org/10.1002/ptr.3251
  46. Ameliorative effect of trimetazidine on cisplatin-induced hepatotoxicity in rats 2015, https://doi.org/10.1139/cjpp-2015-0304
  47. The protective effect of pomegranate extract against cisplatin toxicity in rat liver and kidney tissue vol.121, pp.4, 2015, https://doi.org/10.3109/13813455.2015.1068336
  48. Protective effect of silymarin against cisplatin-induced ototoxicity vol.78, pp.3, 2014, https://doi.org/10.1016/j.ijporl.2013.12.024
  49. Efficacy evaluation of the protein isolated from Peganum harmala seeds as an antioxidant in liver of rats vol.6, pp.4, 2013, https://doi.org/10.1016/S1995-7645(13)60058-9
  50. Effect of Sodium Chloride on Efficiency of Cisplatinum Dissolved in Dimethyl Sulfoxide: An In Vitro Study vol.29, pp.2, 2014, https://doi.org/10.1007/s12291-013-0361-9
  51. Protective Effect of Silymarin against Acrolein-Induced Cardiotoxicity in Mice vol.2012, 2012, https://doi.org/10.1155/2012/352091
  52. Cisplatin administration influences on toxic and non-essential element metabolism in rats vol.28, pp.3, 2014, https://doi.org/10.1016/j.jtemb.2014.02.005
  53. Effects of l-ascorbic acid on two cycles of cisplatin-induced DNA double-strand breaks and phosphorylation of p53 in the liver vol.64, pp.5, 2012, https://doi.org/10.1016/j.etp.2010.11.004
  54. A 43 kD protein from the leaves of the herb Cajanus indicus L. modulates doxorubicin induced nephrotoxicity via MAPKs and both mitochondria dependent and independent pathways vol.94, pp.6, 2012, https://doi.org/10.1016/j.biochi.2012.03.003
  55. Metabolic and toxicological considerations of botanicals in anticancer therapy vol.8, pp.7, 2012, https://doi.org/10.1517/17425255.2012.685717
  56. Comparative study of antifibrotic activity of some magnesium-containing supplements on experimental liver toxicity. Molecular study vol.40, pp.1, 2017, https://doi.org/10.3109/01480545.2016.1172083
  57. Nuclear and Mitochondrial DNA Methylation Patterns Induced by Valproic Acid in Human Hepatocytes 2017, https://doi.org/10.1021/acs.chemrestox.7b00171
  58. Caffeic acid phenethyl ester (CAPE) ameliorates cisplatin-induced hepatotoxicity in rabbit vol.62, pp.1, 2010, https://doi.org/10.1016/j.etp.2009.02.066
  59. Renoprotective effect of Tabernaemontana heyneana Wall. leaves against paracetamol-induced renotoxicity in rats and detection of polyphenols by high-performance liquid chromatography–diode array detector–mass spectrometry analysis vol.4, pp.2, 2014, https://doi.org/10.1016/j.jacme.2014.02.002
  60. Tangeretin attenuates cisplatin-induced renal injury in rats: Impact on the inflammatory cascade and oxidative perturbations vol.258, 2016, https://doi.org/10.1016/j.cbi.2016.09.008
  61. Squalene Selectively Protects Mouse Bone Marrow Progenitors Against Cisplatin and Carboplatin-Induced Cytotoxicity In Vivo Without Protecting Tumor Growth vol.10, pp.10, 2008, https://doi.org/10.1593/neo.08466
  62. Leaves vol.24, pp.4, 2018, https://doi.org/10.1080/10496475.2018.1520774
  63. Enhancement of Silymarin Anti-fibrotic Effects by Complexation With Hydroxypropyl (HPBCD) and Randomly Methylated (RAMEB) β-Cyclodextrins in a Mouse Model of Liver Fibrosis vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00883