High Level Expression of a Protein Precursor for Functional Studies

  • Gathmann, Sven (Institut fur Biochemie und Molekularbiologie, Albert-Ludwigs-Universitat Freiburg) ;
  • Rupprecht, Eva (Institut fur Biochemie und Molekularbiologie, Albert-Ludwigs-Universitat Freiburg) ;
  • Schneider, Dirk (Institut fur Biochemie und Molekularbiologie, Albert-Ludwigs-Universitat Freiburg)
  • Received : 2006.06.02
  • Accepted : 2006.07.21
  • Published : 2006.11.30


In vitro analyses of type I signal peptidase activities require protein precursors as substrates. Usually, these pre-proteins are expressed in vitro and cleavage of the signal sequence is followed by SDS polyacrylamide gel electrophoresis coupled with autoradiography. Radioactive amino acids have to be incorporated in the expressed protein, since the amount of the in vitro expressed protein is usually very low and processing of the signal peptide cannot be followed by SDS polyacrylamide gel electrophoresis alone. Here we describe a rapid and simple method to express large amounts of a protein precursor in E. coli. We have analyzed the effect of ionophors as well as of azide on the accumulation of expressed protein precursors. Azide blocks the function of SecA and the ionophors dissipate the electrochemical gradient across the cytoplasmic membrane of E. coli. Addition of azide ions resulted in the formation of inclusion bodies, highly enriched with pre-apo-plastocyanine. Plastocyanine is a soluble copper protein, which can be found in the periplasmic space of cyanobacteria as well as in the thylakoid lumen of cyanobacteria and chloroplasts, and the pre-protein contains a cleavable signal sequence at its N-terminus. After purification of cyanobacterial pre-apo-plastocyanine, its signal sequence can be cleaved off by the E. coli signal peptidase, and protein processing was followed on Coomassie stained SDS polyacrylamide gels. We are optimistic that the presented method can be further developed and applied.


  1. Berks, B. C., Sargent, F. and Palmer, T. (2000) The Tat protein export pathway. Mol. Microbiol. 35, 260-274
  2. Briggs, L. M., Pecoraro, V. L. and McIntosh, L. (1990) Copperinduced expression, cloning, and regulatory studies of the plastocyanin gene from the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol. Biol. 15, 633-642
  3. Carlos, J. L., Paetzel, M., Brubaker, G., Karla, A., Ashwell, C. M., Lively, M. O., Cao, G., Bullinger, P. and Dalbey, R. E. (2000) The role of the membrane-spanning domain of type I signal peptidases in substrate cleavage site selection. J. Biol. Chem. 275, 38813-38822
  4. Chatterjee, S., Suciu, D., Dalbey, R. E., Kahn, P. C. and Inouye, M. (1995) Determination of Km and kcat for signal peptidase I using a full length secretory precursor, pro-OmpA-nuclease A. J. Mol. Biol. 245, 311-314
  5. Dalbey, R. E. and Kuhn, A. (2000) Evolutionarily related insertion pathways of bacterial, mitochondrial, and thylakoid membrane proteins. Annu. Rev. Cell Dev. Biol. 16, 51-87
  6. Economou, A., Pogliano, J. A., Beckwith, J., Oliver, D. B. and Wickner, W. (1995) SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF. Cell 83, 1171-1181
  7. Economou, A. and Wickner, W. (1994) SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78, 835-843
  8. Fortin, Y., Phoenix, P. and Drapeau, G. R. (1990) Mutations conferring resistance to azide in Escherichia coli occur primarily in the secA gene. J. Bacteriol. 172, 6607-6610
  9. Kinoshita, N., Unemoto, T. and Kobayashi, H. (1984) Proton motive force is not obligatory for growth of Escherichia coli. J. Bacteriol. 160, 1074-1077
  10. Lammertyn, E., Van Mellaert, L., Schacht, S., Dillen, C., Sablon, E., Van Broekhoven, A. and Anne, J. (1997) Evaluation of a novel subtilisin inhibitor gene and mutant derivatives for the expression and secretion of mouse tumor necrosis factor alpha by Streptomyces lividans. Appl. Environ. Microbiol. 63, 1808-1813
  11. Lee, T., Metzger, S. U., Cho, Y. S., Whitmarsh, J. and Kallas, T. (2001) Modification of inhibitor binding sites in the cytochrome bf complex by directed mutagenesis of cytochrome b(6) in Synechococcus sp. PCC 7002. Biochim. Biophys. Acta 1504, 235-247
  12. Liss, L. R. and Oliver, D. B. (1986) Effects of secA mutations on the synthesis and secretion of proteins in Escherichia coli. Evidence for a major export system for cell envelope proteins. J. Biol. Chem. 261, 2299-2303
  13. Martoglio, B. and Dobberstein, B. (1998) Signal sequences: more than just greasy peptides. Trends Cell Biol. 8, 410-415
  14. Mori, H. and Ito, K. (2003) Biochemical characterization of a mutationally altered protein translocase: proton motive force stimulation of the initiation phase of translocation. J. Bacteriol. 185, 405-412
  15. Ng, S. Y. and Jarrell, K. F. (2003) Cloning and characterization of archaeal type I signal peptidase from Methanococcus voltae. J. Bacteriol. 185, 5936-5942
  16. Nishiyama, K., Fukuda, A., Morita, K. and Tokuda, H. (1999) Membrane deinsertion of SecA underlying proton motive force-dependent stimulation of protein translocation. Embo. J. 18, 1049-1058
  17. Oliver, D. B., Cabelli, R. J., Dolan, K. M. and Jarosik, G. P. (1990) Azide-resistant mutants of Escherichia coli alter the SecA protein, an azide-sensitive component of the protein export machinery. Proc. Natl. Acad. Sci. USA 87, 8227-8231
  18. Paetzel, M., Dalbey, R. E. and Strynadka, N. C. (1998) Crystal structure of a bacterial signal peptidase in complex with a betalactam inhibitor. Nature 396, 186-190
  19. Paetzel, M., Dalbey, R. E. and Strynadka, N. C. (2002) Crystal structure of a bacterial signal peptidase apoenzyme: implications for signal peptide binding and the Ser-Lys dyad mechanism. J. Biol. Chem. 277, 9512-9519
  20. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. and Stanier, R. Y. (1979) Generic assinments, strainshistories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1-61
  21. Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989) Molecular cloning: A Laboratory Manual, Cold Spring Habour Press, USA
  22. Schoepfer, R. (1993) The pRSET family of T7 promoter expression vectors for Escherichia coli. Gene 124, 83-85
  23. Shiozuka, K., Tani, K., Mizushima, S. and Tokuda, H. (1990) The proton motive force lowers the level of ATP required for the in vitro translocation of a secretory protein in Escherichia coli. J. Biol. Chem 265, 18843-18847
  24. Tani, K. and Mizushima, S. (1991) A chemically cross-linked nonlinear proOmpA molecule can be translocated into everted membrane vesicles of Escherichia coli in the presence of the proton motive force. FEBS Lett, 285, 127-131
  25. Tani, K., Shiozuka, K., Tokuda, H. and Mizushima, S. (1989) In vitro analysis of the process of translocation of OmpA across the Escherichia coli cytoplasmic membrane. A translocation intermediate accumulates transiently in the absence of the proton motive force. J. Biol. Chem. 264, 18582-18588
  26. Tschantz, W. R. and Dalbey, R. E. (1994) Bacterial leader peptidase 1. Methods Enzymol. 244, 285-301
  27. Von Heijne, G. (2002) Targeting sequences; in Protein Targeting, Transport & Translocation, Dalbey, R. and Von Heijne, G. (eds.), pp. 35-46, Academic Press, London, UK
  28. Yamada, H., Matsuyama, S., Tokuda, H. and Mizushima, S. (1989a) A high concentration of SecA allows proton motive force-independent translocation of a model secretory protein into Escherichia coli membrane vesicles. J. Biol. Chem. 264, 18577-18581
  29. Yamada, H., Tokuda, H. and Mizushima, S. (1989b) Proton motive force-dependent and -independent protein translocation revealed by an efficient in vitro assay system of Escherichia coli. J. Biol. Chem. 264, 1723-1728
  30. Zimmermann, R. and Wickner, W. (1983) Energetics and intermediates of the assembly of Protein OmpA into the outer membrane of Escherichia coli. J. Biol. Chem. 258, 3920-3925

Cited by

  1. Indirect-blocking ELISA for detecting antibodies against glycoprotein B (gB) of porcine cytomegalovirus (PCMV) vol.186, pp.1-2, 2012,
  2. Expression of proteins inEscherichia colias fusions with maltose-binding protein to rescue non-expressed targets in a high-throughput protein-expression and purification pipeline vol.67, pp.9, 2011,
  3. Development of a high-throughput screening assay for the discovery of small-molecule SecA inhibitors vol.413, pp.2, 2011,