DOI QR코드

DOI QR Code

Cloning and Characterization of the HSP70 Gene, and Its Expression in Response to Diapauses and Thermal Stress in the Onion Maggot, Delia antiqua

  • Chen, Bin (Laboratory of Applied Entomology, Graduate School of Agricultural and Life Sciences, The University of Tokyo) ;
  • Kayukawa, Takumi (Laboratory of Applied Entomology, Graduate School of Agricultural and Life Sciences, The University of Tokyo) ;
  • Monteiro, Antonia (Department of Ecology and Evolutionary Biology, Yale University) ;
  • Ishikawa, Yukio (Laboratory of Applied Entomology, Graduate School of Agricultural and Life Sciences, The University of Tokyo)
  • Received : 2006.06.19
  • Accepted : 2006.07.28
  • Published : 2006.11.30

Abstract

The cytosolic members of the HSP70 family of proteins play key roles in the molecular chaperone machinery of the cell. In the study we cloned and sequenced the full-length cDNA of Delia antiqua HSP70 gene, which is 2461 bp long and encodes 643 a.a. with a calculated molecular mass of 70,787 Da. We investigated gene copies of cytosolic HSP70 members of 4 insect species with complete genome available, and found that they are quite variable with species. In order to characterize this protein we carried out an alignment and a phylogenetic analysis with 41 complete protein sequences from insects. The analysis divided the cytosolic members of the family into two classes, HSP70 and HSC70, distinguishable on the basis of 15 residues. HSP70 class members were slightly shorter in length and smaller in molecular mass relative to the HSC70 class members, and the conservative and functional regions in these sequences were documented. Mainly, we investigated the expression of Delia antiqua HSP70 gene, in response to diapauses and thermal stresses. Both summer and winter diapauses elevated HSP70 transcript levels. Cold-stress led to increased HSP70 expression levels in summer- and winter-diapausing pupae, but heat-stress elevated the levels only in the winter-diapausing pupae. In all cases, the expression levels, after being elevated, gradually decreased with time. HSP70 expression was low in non-diapausing pupae but was up-regulated following cold- and heat-stresses. Heat-stress gradually increased the mRNA level with time whereas cold-stress gradually decreased levels after an initial increase.

Keywords

References

  1. Adedokun, T. A. and Denlinger, D. L. (1984) Cold-hardiness: A component of the diapause syndrome in pupae of the flesh flies Sarcophaga crassipalpis and S. bullata. Physiol Entomol 9, 361-364 https://doi.org/10.1111/j.1365-3032.1984.tb00776.x
  2. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Miller, W. and Lipman, D. J. (1997) Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  3. Bendtsen, J. D., Nielsen, H., von Heijne, G. and Brunak, S. (2004) Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783-795 https://doi.org/10.1016/j.jmb.2004.05.028
  4. Boorstein, W. R., Ziegelhoffer, T. and Craig, E. A. (1994) Molecular evolution of the HSP70 multigene family. J. Mol. Evol. 38, 1-17
  5. Burge, C. B. and Karlin, S. (1998) Finding the genes in genomic DNA. Curr. Opin. Struct. Biol. 8, 346-354 https://doi.org/10.1016/S0959-440X(98)80069-9
  6. Caplan, A. J. (2003) What is a co-chapetone? Cell Stress Chaperon 8, 105-107 https://doi.org/10.1379/1466-1268(2003)008<0105:WIAC>2.0.CO;2
  7. Chen, B., Kayukawa, T., Jiang, H., Monteiro, A., Hoshizaki, S. and Ishikawa, Y. (2005a) DaTrypsin, a novel clip-domain serine proteinase gene up-regulated during winter and summer diapauses of the onion maggot, Delia antiqua. Gene 347, 115-123 https://doi.org/10.1016/j.gene.2004.12.026
  8. Chen, B., Kayukawa, T., Monteiro, A. and Ishikawa, Y. (2005b) The expression of HSP90 gene in response to winter and summer diapauses and thermal-stress in the onion maggot, Delia antiqua. Insect Mol. Biol. 14, 697-702 https://doi.org/10.1111/j.1365-2583.2005.00602.x
  9. Chen, B., Piel, W. H., Gui, L. M., Bruford, E. and Monteiro, A. (2005c) The HSP90 family of genes in the human genomes: insights into their divergence and evolution. Genomics 86, 627-637 https://doi.org/10.1016/j.ygeno.2005.08.012
  10. Chen, B., Zhong, D. B. and Monteiro, A. (2006) Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics 7, 156 https://doi.org/10.1186/1471-2164-7-156
  11. Dang, C. V. and Lee, W. M. (1989) Nuclear and nucleolar targeting sequences of c-erb-A, c-myb, N-myc, p53, HSP70, and HIV tat proteins. J. Biol. Chem. 264, 18019-18023
  12. Denlinger, D. L. (2002) Regulation of diapause. Ann. Rev. Entomol. 47, 93-122 https://doi.org/10.1146/annurev.ento.47.091201.145137
  13. Goto S. G. and Kimura, M. T. (2004) Heat-shock-responsive genes are not involved in the adult diapause of Drosophila triauraria. Gene 326, 117-122 https://doi.org/10.1016/j.gene.2003.10.017
  14. Goto, S. G., Yoshida, K. M. and Kimura, M. T. (1998) Accumulation of Hsp70 mRNA under environmental stresses in diapause and nondiapausing adults of Drosophila triauraria. J. Insect. Physiol. 44, 1009-1015 https://doi.org/10.1016/S0022-1910(97)00143-1
  15. Gupta, R. S. and Golding, G. B. (1993) Evolution of HSP70 gene and its implications regarding relationships between archaebacteria, eubacteria, and eukaryotes. J. Mol. Evol. 37, 573-582
  16. Gupta, R. S. and Singh, B. (1994) Phylogenetic analysis of 70 kD heat shock protein sequences suggests a chimeric origin for the eukaryotic cell nucleus. Curr. Biol. 4, 1104-1114 https://doi.org/10.1016/S0960-9822(00)00249-9
  17. Gupta, R. S., Aaitken, K., Falah, M. and Singh, B. (1994) Cloning of Giardia lamblia heat shock protein HSP70 homologs: Implications regarding origin of eukaryotic cells and of endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 91, 2895-2899 https://doi.org/10.1073/pnas.91.8.2895
  18. Guy, C. L. and Li, Q. B. (1998) The organization and evolution of the spinach stress 70 molecular chaperone gene family. Plant Cell 10, 539-556 https://doi.org/10.1105/tpc.10.4.539
  19. Hall, T. A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41, 95-98
  20. Hayward, S. A. L., Rinehart, J. P. and Denlinger, D. L. (2004) Desiccation and rehydration elicit distinct heat shock protein transcript response in flesh fly pupae. J. Exp. Biol. 207, 963-971 https://doi.org/10.1242/jeb.00842
  21. Ishikawa, Y., Mochizuki, A., Ikeshoji, T. and Matsumoto, Y. (1983) Mass-rearing of the onion and seed-corn flies, Hylemya antiqua and H. platura (Diptera: Anthomyiidae) on an artificial diet with antibiotics. Appl. Entomol. Zool. 18, 62-69 https://doi.org/10.1303/aez.18.62
  22. Ishikawa, Y., Yamashita, T. and Nomura, M. (2000) Characteristics of summer diapause in the onion maggot, Delia antiqua (Diptera: Anthomyiidae). J. Insect. Physiol. 46, 161-167 https://doi.org/10.1016/S0022-1910(99)00112-2
  23. Kayukawa, T., Chen, B., Miyazaki, S., Itoyama, K., Shinoda, T. and Ishikawa, Y. (2005) Expression of messenger ribonucleic acid for the t-complex polypeptide-1, a subunit of chaperonin CCT, is upregulated in association with increased cold hardiness in Delia antiqua. Cell Stress Chaperon 10, 204-210 https://doi.org/10.1379/CSC-106R.1
  24. Kiang, J. G. and Tsokos, G. C. (1989) Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol. Ther. 80, 183-201 https://doi.org/10.1016/S0163-7258(98)00028-X
  25. Kristensen, T. N., Dahlgaard, J. and Loeschche, V. (2002) Inbreeding affects Hsp70 expression in two species of Drosophila even at benign temperatures. Evol. Ecol. Res. 4, 1209-1216
  26. Liu, J., Yang, W. J., Zhu, X. J., Karouna-Renier, N. K. and Rao, R. K. (2004) Molecular cloning and expression of two HSP70 genes in the prawn, Macrobrachium rosenbergii. Cell Stress Chaperon 9, 313-323 https://doi.org/10.1379/CSC-40R.1
  27. Lo, W. Y., Liu, K. F., Liao, I. C. and Song, Y. L. (2004) Cloning and molecular characterization of heat shock cognate 70 from tiger shrimp (Penaeus monodon). Cell stress Chaperon 9, 332-343 https://doi.org/10.1379/CSC-47R.1
  28. Nielsen, H., Engelbrecht, J., Brunak, S. and von Heijne, G. (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10, 1-6 https://doi.org/10.1093/protein/10.1.1
  29. Nomura, M. (2001) Studies on completion of winter and summer diapause in the onion maggot, Delia antiqua. PhD. Dissertation, Tokyo University. 106pp
  30. Nomura, M. and Ishikawa, Y. (2000) Biphasic effect of low temperature on completion of winter diapause in the onion maggot, Delia antiqua. J. Insect. Physiol. 36, 373-377
  31. Nomura, M. and Ishikawa, Y. (2001) Dynamic changes in cold hardiness, high-temperature tolerance and trehalose content in the onion maggot, Delia antiqua (Diptera: Anthomyiidae), associated with the summer and winter diapause. Appl. Entomol. Zool. 36, 443-449 https://doi.org/10.1303/aez.2001.443
  32. Rinehart, J. P. and Denlinger, D. L. (2000) Heat-shock protein 90 is down-regulated during pupal diapause in the flesh fly, Sarcophaga crassipalpis, but remains responsive to thermal stress. Insect Mol. Biol. 9, 641-645 https://doi.org/10.1046/j.1365-2583.2000.00230.x
  33. Rinehart, J. P., Yocum, G. D. and Denlinger, D. L. (2000) Developmental upregulation of inducible hsp70 transcripts, but not the cognate form, during pupal diapause in the flesh fly, Sarcophaga crassipalpis. Insect Biochem. Mol. Biol. 28, 515-521
  34. Salvucci, M. E., Stecher, D. S. and Henneberry, T. J. (2000) Heat shock proteins in whiteflies, an insect that accumulates sorbitol in response to heat stress. J. Therm. Biol. 25, 363-371 https://doi.org/10.1016/S0306-4565(99)00108-4
  35. Sorensen, J. G. and Loeschcke, V. (2001) Larval crowding in Drosophila melanogaster induces Hsp70 expression, and leads to increased adult longevity and adult thermal stress resistance. J. Insect Physiol. 47, 1301-1307 https://doi.org/10.1016/S0022-1910(01)00119-6
  36. Sorensen, J. G., Kristensen, T. N. and Loeschche, V. (2003) The evolutionary and ecological role of heat shock proteins. Ecol. Lett. 6, 1025-1037 https://doi.org/10.1046/j.1461-0248.2003.00528.x
  37. Swofford, D. (2001) PAUP*: Phylogenetic analysis using parsimony (and other methods), version 4.0b8. Sinauer Associates, Inc, Sunderlands, Massachusetts
  38. Tachibana, S. I., Numata, H. and Goto, S. G. (2005) Gene expression of heat-shock proteins (Hsp23, Hsp70 and Hsp90) during and after larval diapause in the blow fly Lucilia sericata. J. Insect Physiol. 51, 641-647 https://doi.org/10.1016/j.jinsphys.2004.11.012
  39. Tatar, M., Khazaeli, A. A. and Curtsinger, J. W. (1997) Chaperoning extended life. Nature 390, 30
  40. Tauber, M. J., Tauber, C. A. and Masaki, S. (1986) Seasonal adaptations of insects. Oxford University Press, New York
  41. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 25, 4876-4882 https://doi.org/10.1093/nar/25.24.4876
  42. Yamashita, M., Hirayoshi, K. and Nagata, K. (2004) Characterization of multiple members of the HSP70 family in platyfish culture cells: molecular evolution of stress protein HSP70 in vertebrates. Gene 336, 207-218 https://doi.org/10.1016/j.gene.2004.04.023
  43. Yocum, G. D. (2001) Different expression of two HSP70 transcripts in response to cold shock, thermoperiod, and adult diapause in the Colorado potato beetle. J. Insect Physiol. 47, 1139-1145 https://doi.org/10.1016/S0022-1910(01)00095-6
  44. Yocum, G. D., Joplin, K. H. and Denlinger, D. L. (1991) Expression of heat shock proteins in response to high and low temperature extreme in diapausing pharate larvae of the gypsy moth, Lymantria dispar. Arch, Insect Biochem. 18, 239-249 https://doi.org/10.1002/arch.940180406
  45. Yocum, G. D., Joplin, K. H. and Denlinger, D. L. (1998) Upregulation of a 23 kDa small heat shock protein transcript during pupal diapause in the flesh fly, Sarcophaga crassipalpis. Insect Biochem. Mol. Biol. 28, 677-682 https://doi.org/10.1016/S0965-1748(98)00046-0
  46. Zdobnov, E. M. and Apweiler, R. (2001) InterProScan - an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17, 847-848 https://doi.org/10.1093/bioinformatics/17.9.847

Cited by

  1. Responses of invertebrates to temperature and water stress: A polar perspective vol.54, 2015, https://doi.org/10.1016/j.jtherbio.2014.05.004
  2. Insight into the possible mechanism of the summer diapause ofDelia antiqua(Diptera: Anthomyiidae) through digital gene expression analysis vol.23, pp.3, 2016, https://doi.org/10.1111/1744-7917.12323
  3. Cloning of the heat shock protein 90 and 70 genes from the beet armyworm, Spodoptera exigua, and expression characteristics in relation to thermal stress and development vol.17, pp.1, 2012, https://doi.org/10.1007/s12192-011-0286-2
  4. Insect Heat Shock Proteins During Stress and Diapause vol.60, pp.1, 2015, https://doi.org/10.1146/annurev-ento-011613-162107
  5. Cloning of the Heat Shock Protein 60 Gene from the Stem Borer,Chilo suppressalis, and Analysis of Expression Characteristics Under Heat Stress vol.10, pp.100, 2010, https://doi.org/10.1673/031.010.10001
  6. Dynamism in physiology and gene transcription during reproductive diapause in a heteropteran bug, Pyrrhocoris apterus vol.54, pp.1, 2008, https://doi.org/10.1016/j.jinsphys.2007.08.004
  7. Differential gene expression between summer and winter diapause pupae of the onion maggot Delia antiqua, detected by suppressive subtractive hybridization vol.58, pp.11, 2012, https://doi.org/10.1016/j.jinsphys.2012.08.010
  8. Regulation of heat shock proteins in the apple maggotRhagoletis pomonelladuring hot summer days and overwintering diapause vol.33, pp.4, 2008, https://doi.org/10.1111/j.1365-3032.2008.00639.x
  9. Identification of heat shock cognate protein 70 gene (Alhsc70) ofApolygus lucorumand its expression in response to different temperature and pesticide stresses vol.23, pp.1, 2016, https://doi.org/10.1111/1744-7917.12193
  10. Upregulation of a desaturase is associated with the enhancement of cold hardiness in the onion maggot, Delia antiqua vol.37, pp.11, 2007, https://doi.org/10.1016/j.ibmb.2007.07.007
  11. Antioxidant responses of Chilo suppressalis (Lepidoptera: Pyralidae) larvae exposed to thermal stress vol.36, pp.5, 2011, https://doi.org/10.1016/j.jtherbio.2011.04.003
  12. CognateHsp70 gene is induced during deep larval diapause in the mothSesamia nonagrioides vol.18, pp.2, 2009, https://doi.org/10.1111/j.1365-2583.2009.00866.x
  13. Proteomic profiling of a parasitic wasp exposed to constant and fluctuating cold exposure vol.37, pp.11, 2007, https://doi.org/10.1016/j.ibmb.2007.07.004
  14. Cloning of heat shock protein genes from the brown planthopper,Nilaparvata lugens, and the small brown planthopper,Laodelphax striatellus, and their expression in relation to thermal stress vol.15, pp.5, 2008, https://doi.org/10.1111/j.1744-7917.2008.00228.x
  15. Chaperone proteins and winter survival by a freeze tolerant insect vol.57, pp.8, 2011, https://doi.org/10.1016/j.jinsphys.2011.02.016
  16. Transcript analysis and expression profiling of three heat shock protein 70 genes in the ectoparasitoidHabrobracon hebetor(Hymenoptera: Braconidae) vol.21, pp.4, 2014, https://doi.org/10.1111/1744-7917.12032
  17. Differential regulation of heat shock protein genes by temperature in relation to initial diapause in the egg of the katydidParatlanticus ussuriensis vol.38, pp.2, 2013, https://doi.org/10.1111/phen.12020
  18. Characteristic Expression of Three Heat Shock-Responsive Genes During Larval Diapause in the Bamboo Borer Omphisa fuscidentalis vol.25, pp.3, 2008, https://doi.org/10.2108/zsj.25.321
  19. Expression of heat shock protein 70a mRNA in Bombyx mori diapause eggs vol.56, pp.9, 2010, https://doi.org/10.1016/j.jinsphys.2010.03.023
  20. Expression of stress-related genes in diapause of European corn borer (Ostrinia nubilalis Hbn.) vol.186, 2015, https://doi.org/10.1016/j.cbpb.2015.04.004
  21. Tissue-specific variation of heat shock protein gene expression in relation to diapause in the bumblebee Bombus terrestris vol.38, pp.1, 2008, https://doi.org/10.1111/j.1748-5967.2008.00142.x
  22. Gene expression, metabolic regulation and stress tolerance during diapause vol.67, pp.14, 2010, https://doi.org/10.1007/s00018-010-0311-0