DOI QR코드

DOI QR Code

Doxorubicin Binds to Un-phosphorylated Form of hNopp140 and Reduces Protein Kinase CK2-Dependent Phosphorylation of hNopp140

  • Kim, Yun-Kyoung (Biomedical Research Center, Korea Institute of Science and Technology) ;
  • Lee, Won-Kyu (Biomedical Research Center, Korea Institute of Science and Technology) ;
  • Jin, Young-nam (Biomedical Research Center, Korea Institute of Science and Technology) ;
  • Lee, Kong-Joo (Division of Molecular Life Sciences, Ewha Womans University) ;
  • Jeon, Hye-sung (Biomedical Research Center, Korea Institute of Science and Technology) ;
  • Yu, Yeon-Gyu (Department of Chemistry, Kookmin University)
  • Received : 2006.05.12
  • Accepted : 2006.08.11
  • Published : 2006.11.30

Abstract

Human nucleolar phosphoprotein p140 (hNopp140) is a nucleolar phosphoprotein that can bind to doxorubicin, an anti-cancer agent. We have examined the interaction between hNopp140 and doxorubicin as well as the folding property of hNopp140. Also, the effects of ATP and phosphorylation on the affinity of hNopp140 to doxorubicin are investigated by affinity dependent co-precipitation and surface plasmon resonance methods. Doxorubicin preferentially binds to un-phosphorylated form of hNopp140 with a $K_D$ value of $3.3\;{\times}\;10^{-7}$ M. Furthermore, doxorubicin reduces the protein kinase CK2-dependent phosphorylation of hNopp140, indicating that doxorubicin may perturb the cellular function of hNopp140 by reducing the protein kinase CK2-dependent phosphorylation of hNopp140. Low contents of the secondary structures of hNopp140 and the fast rate of proteolysis imply that hNopp140 has a high percentage of flexible regions or extended loop structures.

Keywords

References

  1. Blum, R. H. and Carter, S. K. (1974) Adriamycin. A new anticancer drug with significant clinical activity. Ann. Intern. Med. 80, 249-259 https://doi.org/10.7326/0003-4819-80-2-249
  2. Bretscher, A. (1984) Smooth muscle caldesmon. Rapid purification and F-actin cross-linking properties. J. Biol. Chem. 259, 12873-12880
  3. Chen, H. K., Pai, C. Y., Huang, J. Y. and Yeh, N. H. (1999) Human Nopp140, which interacts with RNA polymerase I: implications for rRNA gene transcription and nucleolar structural organization. Mol. Cell. Biol. 19, 8536-8546 https://doi.org/10.1128/MCB.19.12.8536
  4. Chen, H. K. and Yeh, N. H. (1997). The nucleolar phosphoprotein P130 is a GTPase/ATPase with intrinsic property to form large complexs triggered by F and $Mg^{2+}$. Biochem. Biophys. Res. Comm. 230, 370-375 https://doi.org/10.1006/bbrc.1996.5966
  5. Chiu, C. M., Tsay, Y. G., Chang, C. J. and Lee, S. C. (2002) Nopp140 is a mediator of the protein kinase A signaling pathway that activates the acute phase response alpha1-acid glycoprotein gene. J. Biol. Chem. 277, 39102-39111 https://doi.org/10.1074/jbc.M205915200
  6. Fink, A. L. (2005) Natively unfolded proteins. Curr. Opin. Struct. Biol. 15, 35-41 https://doi.org/10.1016/j.sbi.2005.01.002
  7. Iakoucheva, L. M., Brown, C. J., Lawson, J. D., Obradovic, Z. and Dunker, A. K. (2002) Intrinsic disorder in cell-signaling and cancer-associated proteins. J. Mol. Biol. 323, 573-584 https://doi.org/10.1016/S0022-2836(02)00969-5
  8. Isaac, C., Pollard, J. W. and Meier, U. T. (2001) Intranuclear endoplasmic reticulum induced by Nopp140 mimics the nucleolar channel system of human endometrium. J. Cell Sci. 114, 4253-4264
  9. Isaac, C., Yang, Y. and Meier, U. T. (1998) Nopp140 functions as a molecular link between the nucleolus and the coiled bodies. J. Cell. Biol. 142, 319-329 https://doi.org/10.1083/jcb.142.2.319
  10. Jin, Y., Yu, J. and Yu, Y. G. (2002) Identification of hNopp140 as a binding partner for doxorubicin with a phage display cloning method. Chem. Biol. 9, 157-162 https://doi.org/10.1016/S1074-5521(02)00096-0
  11. Kim, Y. K., Jin, Y., Vukoti, K. M., Park, J. K., Kim, E. E., Lee, K. J. and Yu, Y. G. (2003) Purification and characterization of human nucleolar phosphoprotein 140 expressed in Escherichia coli. Protein Expr. Purif. 31, 260-264 https://doi.org/10.1016/S1046-5928(03)00194-3
  12. Koop, A. and Cobbold, P. H. (1993) Continuous bioluminescent monitoring of cytoplasmic ATP in single isolated rat hepatocytes during metabolic poisoning. Biochem. J. 295, 165-170 https://doi.org/10.1042/bj2950165
  13. Kubinski, K., Zielinski, R., Hellan, U., Mazur, E. and Szyszka, R. (2006) Yeast Elf1 factor is phosphorylated and interacts with protein kinase CK2. J. Biochem. Mol. Biol. 39, 311-318 https://doi.org/10.5483/BMBRep.2006.39.3.311
  14. Lee, C. and Yu, M.-H. (2005) Protein folding and diseases. J. Biochem. Mol. Biol. 38, 275-280 https://doi.org/10.5483/BMBRep.2005.38.3.275
  15. Li, D., Meier, U. T., Dobrowolska, G. and Krebs, E. G. (1997) Specific interaction between casein kinase 2 and the nucleolar protein Nopp140. J. Biol. Chem. 272, 3773-3779 https://doi.org/10.1074/jbc.272.6.3773
  16. Lynch, W. P., Riseman, V. M. and Bretscher, A. (1987) Smooth muscle caldesmon is an extended flexible monomeric protein in solution that can readily undergo reversible intra- and intermolecular sulfhydryl cross-linking. A mechanism for caldesmon's F-actin bundling activity. J. Biol. Chem. 262, 7429-7437
  17. Meggio, R. and Pinna, L. A. (2003) One-thousand-and-one substrates of protein kinase CK2. FASEB J. 17, 349-368 https://doi.org/10.1096/fj.02-0473rev
  18. Meier, U. T. and Blobel, G. (1994) NAP57, a Mammalian Nucleolar protein with a Putative Homolog in Yeast and Bacteria. J. Cell. Biol. 127, 1505-1514 https://doi.org/10.1083/jcb.127.6.1505
  19. Meier, U. T. and Blobel, G. (1992) Nopp140 shuttles on tracks between nucleolus and cytoplasm. Cell 70, 127-138 https://doi.org/10.1016/0092-8674(92)90539-O
  20. Miyazono, K., Sawano, Y. and Tanokura, M. (2005) Crystal structure and structural stability of acylphosphatase from hyperthermophilic archaeon Pyrococcus horikoshii OT3. Proteins 61, 196-205 https://doi.org/10.1002/prot.20535
  21. Nakayama, K. I., Hatakeyama, S. and Nakayama, K. (2001) Regulation of the cell cycle at the G1-S transition by proteolysis of cyclin E and p27Kip1. Biochem. Biophys. Res. Commun. 282, 853-860 https://doi.org/10.1006/bbrc.2001.4627
  22. Olson, M. O. and Busch, H. (1978) Nucleolar proteins. Methods. Cell. Biol. 17, 163-210 https://doi.org/10.1016/S0091-679X(08)61143-7
  23. Pai, C. Y., Chen, H. K., Sheu, H. L. and Yeh, N. H. (1995) Cellcycle- dependent alterations of a highly phosphorylated nucleolar protein p130 are associated with nucleologenesis. J. Cell. Sci. 108, 1911-1920
  24. Pai, C. Y. and Yeh, N. H. (1996) Cell proliferation-dependent expression of two isoforms of the nuclear phosphoprotein p130. Biochm. Biophys. Res. Comm. 221, 581-587 https://doi.org/10.1006/bbrc.1996.0639
  25. Pelton, J. T. and McLean, L. R. (2000) Spectroscopic methods for analysis of protein secondary structure. Anal. Biochem. 277, 167-176 https://doi.org/10.1006/abio.1999.4320
  26. Romero, P., Obradovic, Z., Li, X., Garner, E. C., Brown, C. J. and Dunker, A. K. (2001) Sequence complexity of disordered protein. Proteins 42, 38-48 https://doi.org/10.1002/1097-0134(20010101)42:1<38::AID-PROT50>3.0.CO;2-3
  27. Sargent, D., Benevides, J. M., Yu, M. H., King, J. and Thomas, G. J., Jr. (1988) Secondary structure and thermostability of the phage P22 tailspike: XX. Analysis by Raman spectroscopy of the wild-type protein and a temperature-sensitive folding mutant. J. Mol. Biol. 199, 491-502 https://doi.org/10.1016/0022-2836(88)90620-1
  28. Schweers, O., Schonbrunn-Hanebeck, E., Marx, A. and Mandelkow, E. (1994) Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for betastructure. J. Biol. Chem. 269, 24290-24297
  29. Simpkins, H., Pearlman, L. F., and Thompson, L. M. (1984) Effects of adriamycin on supercoiled DNA and calf thymus nucleosomes studied with fluorescent probes. Cancer. Res. 44, 613-618
  30. Thomas, J., Van Patten, S. M., Howard, P., Day, K. H., Mitchell, R. D., Sosnick, T., Trewhella, J., Walsh, D. A. and Maurer, R. A. (1991) Expression in Escherichia coli and characterization of the heat-stable inhibitor of the cAMP-dependent protein kinase. J. Biol. Chem. 266, 10906-10911
  31. Weinreb, P. H., Zhen, W., Poon, A. W., Conway, K. A. and Lansbury, P. T., Jr. (1996) NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. Biochemistry 35, 13709-13715 https://doi.org/10.1021/bi961799n
  32. Yang, Y., Isaac, C., Wang, C., Dragon, F., Pogacic, V. and Meier, U. T. (2000) Conserved composition of mammalian box H/ ACA and box C/D small nucleolar ribonucleoprotein particles and their interaction with the common factor Nopp140. Mol. Biol. Cell. 11, 567-577 https://doi.org/10.1091/mbc.11.2.567

Cited by

  1. CK2 phosphorylates AP-2α and increases its transcriptional activity vol.44, pp.7, 2011, https://doi.org/10.5483/BMBRep.2011.44.7.490
  2. Survey of the year 2006 commercial optical biosensor literature vol.20, pp.5, 2007, https://doi.org/10.1002/jmr.862
  3. Biophysical characterization of the structural change of Nopp140, an intrinsically disordered protein, in the interaction with CK2α vol.477, pp.2, 2016, https://doi.org/10.1016/j.bbrc.2016.06.040
  4. Analysis of proteome changes in doxorubicin-treated adult rat cardiomyocyte vol.74, pp.5, 2011, https://doi.org/10.1016/j.jprot.2011.02.013
  5. Use of phage display technology for the determination of the targets for small-molecule therapeutics vol.5, pp.4, 2010, https://doi.org/10.1517/17460441003653155
  6. Mitoxantrone Binds to Nopp140, an Intrinsically Unstructured Protein, and Modulate its Interaction with Protein Kinase CK2 vol.33, pp.6, 2012, https://doi.org/10.5012/bkcs.2012.33.6.2005
  7. The antitumor agent doxorubicin binds to Fanconi anemia group F protein vol.20, pp.21, 2012, https://doi.org/10.1016/j.bmc.2012.09.015
  8. Deletion of Drosophila Nopp140 induces subcellular ribosomopathies vol.124, pp.2, 2015, https://doi.org/10.1007/s00412-014-0490-9
  9. Characterization of the InsP6-dependent interaction between CK2 and Nopp140 vol.376, pp.2, 2008, https://doi.org/10.1016/j.bbrc.2008.09.008
  10. How Do We Study the Dynamic Structure of Unstructured Proteins: A Case Study on Nopp140 as an Example of a Large, Intrinsically Disordered Protein vol.19, pp.2, 2018, https://doi.org/10.3390/ijms19020381