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Modal Analysis of Rotating Beam Structures Having Complex
Configurations Employing Multi-Reference Frames

Jung Min Kim
Robot R&D Institute, Daewoo Shipbuilding & Marine Engineering Co., Ltd.,
Jeongwang-dong, Siheung-si, Kyonggi~do 429-793, Korea
Hong Hee Yoo*
School of Mechanical Engineering, Hanyang University,
Seoul 133-791, Korea

A modeling method for the modal analysis of rotating beam structures having complex

configurations employing multi-reference frames is presented in the present study. In most

structural analysis methods, single reference frame is employed for the modal analysis. For

simple structures such as single beam or single plate, the method of employing single reference

frame usually provides rapidly converging accurate results. However, for general structures

having complex configurations, such a method provides slowly converging, and often erroneous,

results. In the present study, the effects of employing multi-reference frames on the convergence

and the accuracy of the modal analysis of rotating beam structures having complex con-

figurations are investigated.
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1. Introduction

Designs of aircraft or spacecraft, which are
undergoing large overall motion during their
normal operation, necessitate dynamic modeling
methods for structures undergoing large overall
motion. Even though such design activities can be
accomplished through experiments, it is often very
difficult and expensive to realize the actual oper-
ation environment on Earth for the aircraft or the
spacecraft. For instance, the gravitational field in
space is much different from that on Earth. Also,
fast rotational rigid body motion, that is one of
normal operations of aircraft, is quite difficult to
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realize through an experiment. Therefore, de-
signers naturally endeavor to simulate the opera-
tion by employing an analytical or a numerical
method instead of employing an experimental
method. The analytical (or numerical) method,
however, needs to be accurate and efficient if the
design task can be accomplished with satisfaction.

Several modeling methods have been developed
for the analysis of structures undergoing large
overall motion. Classical linear modeling method
(Ho, 1977 ; Shabana and Wehage, 1982 ; Ahmed
and Shabana, 1986) is widely used to predict
dynamic characteristics of structures. This model-
ing method has several merits such as simplicity
of formulation, ease of implementation in finite
element methods, and available coordinate re-
duction techniques, which are often critically im-
portant for dynamic analysis of structures. How-
ever, classical modeling method often displays a
critical flaw when the structure undergoes a large
overall motion. Consequently, several nonlinear
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modeling methods (Christensen and Lee, 1986)
were introduced to resolve the problem of classi-
cal linear modeling method. However, these me-
thods are inconvenient (so inefficient) for the
modal analysis of structures undergoing overall
motion. A three-step procedure (first finding
dynamic equilibrium state, then linearizing the
nonlinear equations at the equilibrium state, and
finally performing modal analysis with the lin-
earized equations) needs to be followed to obtain
the modal characteristics. And, in contrast to the
linear modeling method, these methods are not
available the coordinate reduction technique.
More recently, to avoid the inconvenience of
nonlinear modeling methods, special linear mo-
deling methods employing hybrid deformation
variables (Kane et al., 1987 ; Yoo et al.,, 1995;
Park and Yoo, 1997 : Choi et al., 2005 ; Kim and
Yoo, 2002 ; Lee et al., 2004) were introduced.
However, only simple structures such as single
beam or single plate are solved with the modeling
methods in which single reference frame is em-
ployed.

In previous modeling methods, single reference
frame (an inertial reference frame is usually
employed in the nonlinear modeling methods and
a local reference frame is employed in the speci-
al linear modeling methods) is employed. The
method of employing single reference frame is
simple and effective to analyze simple structures
such as a beam or a plate. However, for general
structures having complex configurations, such a
method could provide slowly converging, and
often erroneous, results.

In this paper, a modeling method employing
multi-reference frames is proposed. The proposed
modeling method employs finite element method
to consider general structures having complex
configuration. The modeling method employs
lumped mass modeling technique that simplifies
the derivation of equations of motion. The mass
and the stiffness matrices can be easily obtained
from the commercial finite element codes for
static and dynamic analysis of structures. Elastic
deformations are approximated with the modal
matrix, which can be obtained from the mass and
the stiffness matrices by solving the eigenvalue

problem. Therefore, in contrast to the nonlinear
modeling method, the proposed method is avail-
able the coordinate reduction techniques like-
wise the linear modeling method. The geometric
stiffening effect that results from the centrifugal
inertia force caused by large overall motion is
also considered in the modeling method. To veri-
fy the rapid convergence and the accuracy of the
proposed modeling method, some numerical
examples are solved. The results obtained by the
present modeling method employing multi-refer-
ence frames are compared to those of a modeling
method of employing single reference frame.

2. Equations of Motion

2.1 Kinetic energy .

Figure 1 shows the configuration of a struc-
ture 7 undergoing rigid body motion and elastic
deformation. In the figure, 7 denotes configura-
tion of the structure undergoing only the rigid
body motion. The structure 7 is discretized in the
lumped mass model. This configuration is ob-
served in the inertial reference frame X;—X.
Xi{—X} is a body reference frame fixed on the
structure, 7 represents a generic node of the dis-
cretized structure 7 and ¥3—X% is a nodal refer-
ence frame fixed on the generic node 7. In the
figure, R’ is position vector of the origin of the
Xi—X: 0 is rotational coordinate of the X|—
X% measured in the X;—2Xe, % is a position

Fig. 1 Configuration of a structure undergoing rigid
body motion and elastic deformation
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vector of the j-th node in the undeformed state,
u% is pure translational elastic deformation and
¢ is pure rotational elastic deformation of the
J-th node measured in the Xi{— X3 Using these
quantities, position vector of the j-th node
measured in the X, — X, can be given as follows :

=R+ AW=R+A’ (i, +1) (1)

where A is the orientation matrix of the Xi—
X} with respect to the X;—Xz. All nodal elastic
deformations u% of the structure 7 can be ap-
proximated using the modal matrix.
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where N? is a reduced modal matrix which con-

a5 =

sists of mode vectors associated with several lower
natural frequencies of the structure, N¢ and N
are sub-matrices of NY associated with the
translational and rotational elastic deformation of
the j-th node, #% is the total number of nodes of
the structure 7 and q? is the modal coordinate. By
using Eq. (2), the translational elastic deforma-
tion 0} of the j-th node can be represented as
follows :

uy;=Niq; (3)

Velocity of the j-th node can be obtained by
substituting Eq. (3) into Eq. (1) and differen-
tiating the resulted equation with respect to time
in the inertial reference frame. This yields

i = R+ Bi¢*+ A'Nigh (4)
where
Bi=Aju; (s)

Since u%; is a constant vector (a position vector of
the j-th node in the undeformed state), in Eq.
(4), the term related to the time derivative of u;
is disappeared. In Eq. (5), A} is partial derivative
of Afwith respect to 0°. Let’s define that e} is the
mass of the j-th node. Then the kinetic energy of
the structure 7 can be described as follows :

R)' M, M, M,|[R| |
6 Mo My || 6 | =54"M (6)
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where, M’ and q° are the mass matrix and the
generalized coordinate vector for structure i.
Symbols used in the above equation are defined
as follows:
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2.2 Strain energy

Since the strain energy of the structures is only
associated with elastic deformations of the struc-
tures, the strain energy of the structure 7 is can be
described as follows :

ol e
U'=5 a/K'a; (9)
where K is the global stiffness matrix in the finite
element method. By using Eq. (2) and Eq. (9),

the strain energy can be written as follows:
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where, K% is the diagonal matrix defined as fol-
lows :

Ki=N7KN* (11)

2.3 Generalized force by geometric nonlin-
earity

To consider the geometric stiffening effect of a
structure that consists of beam elements, work
done by the axial force P during the lateral de-
flection should be considered. The geometric
stiffening effect of an infinitesimal beam element
due to lateral deflection is shown in Fig. 2. The
axial length change of the infinitesimal beam
element due to lateral deflection can be obtained
as follows :
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Fig. 2 Foreshortening of an infinitesimal beam ele-
ment due to lateral deflection
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Since foreshortening occurs while the axial force
acts on the element, the work done by the axial
force is negative. Therefore, the work done by the
axial force, which is invariant during the fore-
shortening, can be obtained as follows:

wi=—L [P (B g )

where /¥ is the length of the j-th beam element in
the structure 7 ; P¥ is the axial force acting on the
beam element ; 24’ is the lateral deflection of the
beam element. Therefore, the virtual work done
by the axial force of the structure 7 that is com-
posed of #; beam elements can be described as
following equation.

SWi =—§.; OZUP"J' (22 5 (24 are (14)

By employing the shape function S of a beam
element, the axial and lateral deflection of beam
element can be written as follows :

|iu1u} =S1JT1Jq} (15)
Uz

The shape function 8% and T# in Eq. (15
given as follows :
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Fig. 3 Notations for ;-th beam element

where
x
&= g (17)
TijECijLijNi (18)
where
[ cosa” sine0 0 0 0]
—sing“ cos e’ 0 0 0 0
g 0 0 1 0 0 0
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In the above equations, C¥ and LY denote a
transformation matrix and a Boolean matrix for
beam element assembly, respectively. In Eq. (19),
a” denotes the angle between the structure refer-
ence frame X’{—Xﬁ and the element reference
frame %’ —%¥. In Eq. (20), m and % denote the
node numbers of the j-th beam element, which
are shown in Fig. 3.

Substituting Eq. (15) into Eq. (14), the virtual
work created by the geometric stiffening effect can
be obtained as follows:

oWi =—af K& oq} (21)
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In the above equation, K% is the geometric stiff-
ness matrix for structure ¢ which can be defined as

KéEé PuTHT GETY (22)
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where S, is the partial derivative of S§ with
respect to x. Using the Hooke’s law, the axial
force P¥ can be obtained as follows :
Pl = Fiigii dut’ \_ G IIQET i
= a W =F"q Sl,xqf (24)
where E¥ is the Young’s modulus of the beam
element j in the structure 7, @” is the cross sec-
tional area of the element and

b1
Lx =g

[~-100100] (25)

From Eq. (21), the generalized force due to the
geometric stiffening effect associated with g% can
be obtained as follows:

(Qe) r=—Kzqy (26)

Finally, the generalized force can be expressed as
follows :

Q= (27)
Q) »

2.4 Equations of motion

By using the kinetic energy, the strain energy,
and the generalized force by the geometric non-
linearity presented in the previous three sections,
the equations of motion for structure that consists
of nb substructures can be described as follows:

Mda+ PIA=—Ka+Q,+ Qs (28)
D(q, 1)=0 (29)

In the above equation, M is the system mass ma-
trix that is function of the rotational and modal
coordinates, and K is the system stiffness matrix.
They are defined as follows.

M=diag (M, ---, M™) (30)
K=diag (K, ---, K™) (31)

And q is the generalized coordinate of the system,

- @ is the constraints equation, @, and A are the

constraint Jacobian matrix and the Lagrange
multiplier vector that relates reaction force due to
constraints, respectively. The notation Q, is the
generalized force due to centrifugal and Coriolis
acceleration. It is given as follows.

Q.=[QY, -, Q&"]7 (32)

where Q) is

i rici g | d CiTaria ey ||
Q=—Maq'+- —a—i(q Mq’) (33)
q
And the generalized force of the system due to the

geometric nonlinearity is

Q:=[QY, -, Q¥']” (34)

2.5 Equations for modal analysis

To perform modal analysis of rotating struc-
tures, the dynamic equilibrium position and the
linearized equations of motion at the equilibrium
need to be derived to obtain the mass and the
stiffness matrices.

The equations of motion Eq. (28) employ in-
dependent and dependent coordinates. The in-
dependent coordinates become constant in the
dynamic equilibrium position and the dependent
coordinates vary with time. Therefore, the equa-
tions of motion must be expressed with the in-
dependent coordinates to obtain the dynamic
equilibrium position. For the purpose, the recur-
sive formulation is employed in this study.

First, the system coordinates can be partitioned
as follows :

a=[aq} a/]” (35)

where qu and q; represent the dependent and
independent coordinates, respectively.
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Fig. 4 Configuration of a two-beam structure

For clear explanation of the dependent and
independent coordinates, consider the structure
which is rigidly connected with two beam struc-
tures, the point O is fixed and the rotational
speed (£2s) of the reference frame Xi— X3 is
constant as shown in Fig. 4.

For the structure, the dependent and indepen-
dent coordinates are defined and related to the
vectors in Eq. (8) as follows :

R’ Contant
6* wt
= = ) . ) . 3
W= gort || iy A (et Nl | Y
6| | 0 +Nigi+4
q;
Qiz[q}+l:| (37>

Using the recursive formulation, the double dif-
ferentiation of the system coordinates results in
the following equation.

4=B.4;t7: (38)

in which B; is the velocity transformation matrix
which is mathematically defined as following
equation and y; is the quadratic velocity vector of
the independent coordinates.

_ —1
B,—=[ P ‘D‘“} (39

Substituting Eq. (38) into Eq. (28) and pre-
multiplying the equation by B, one can obtain
the following equation.

BIMB.4.+Bf (My.—Q =0 (40)
where

Q=—Kq+Q,+Q¢ (41)

Note that the term containing the Lagrange mul-
tipliers are disappeared in Eq. (41), because of,
the velocity transformation matrix B; is the null
space of the Jacobian matrix @y

In Eq. (40}, one can obtain the dynamic equi-
librium equation by letting q;=d.=0. Since the
resulting dynamic equilibrium equation is gener-
ally nonlinear in terms of the independent coor-
dinates, the dynamic equilibrium position can be
obtained by using Newton-Raphson algorithm.
Finally, the mass, damping and stiffness matrices
can be obtained by linearizing Eq. (40) at the
obtained dynamic equilibrium position. Thus, the
mass, damping and stiffness matrices for the
modal analysis can be obtained as follows:

M*=B{/MB:l¢,=q; (42)

C*Z[ (BI'TMBidi'}'BiTM%'_BiTQ)iI (43)

%\m

A 2
i Q" =g}

|

K=~ (BIMBii+BIMyi~BIQ) | . (44)

W

q:

where, g} is the independent coordinates at the
dynamic equilibrium position. To obtain the
damping and stiffness matrix in Eq. (43) and Eq.
(44) a well-known finite difference method is
employed in the present study. Finally, the equa-
tion for the modal analysis can be obtained as
follows :

M*84:+C*8q, +K*dq. =0 (45)
3. Numerical Studies and Results

Figure S shows a rotating angled-beam struc-
ture. The angled-beam rotates in the plane with a
constant angular speed £s. The notation § shown
in the figure denotes the angle between the hori-
zontal beam and the skewed beam. X1—X3 is a
reference frame which is fixed on the left end of
horizontal beam. The mathematical model for the
angled-beam structure can be derived by follow-
ing the procedure presented in sec. 2.3 through
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Fig. 5 Configuration of rotating angled-beam

Table 1 Properties of the angled-beam

E o I A I 2
(N/m?) | (kg/m) | (m?) (m?) (m) | (m)
7% 10 1.2 |2%x107|14%x107*| 5 5

sec. 2.5 along with the finite element prbcedure.
The geometric and the material properties of the
beam are shown in Table 1. 32-beam elements are
used for the numerical studies.

3.1 Dynamic equilibrium state

Before performing the modal analysis, the dy-
namic equilibrium positions of the free end P are
computed employing single reference frame meth-
od and multi-reference frame method, when angle
B is the right angle (90°). The results obtained
by the two methods are shown in Figs. 6 and 7.
The results obtained with a commercial code are
also shown in the figure for the purpose of veri-
fication. Fully nonlinear beam elements are em-
ployed with the commercial code to obtain the
dynamic equilibrium positions. The dynamic
equilibrium positions are measured in the refer-
ence frame X1—X} Figs. 6 and 7 show the
dynamic equilibrium positions of the free end in
X1 and X} directions versus the angular speed.
The figures show that the results employing
multi-reference frames are in excellent agreement
with those of the commercial code. However, the
results obtained with the single reference frame
become inaccurate as the angular speed increases.
Since the modal analysis is performed using the
equations of motion that are linearized at the
dynamic equilibrium position, one can easily
speculate that the modal analysis results obtained
by employing the multi-reference frames should
be more accurate than those obtained by em-
ploying the single reference frame.

i
; e
E i ! e T
= ¢ T =
s4r LT ; -
w Ji / ’
E v
é 2 b ._, j/‘
3 o
Sl o
= N
o K7
E] e
E1f f ~—— ~— — ANSYS{Non - linear}
N
é / ------------ Single - RF
0 = Muilti - RF
i A i
[ § 10 15 20

Angular Speed €, (rad/s)

Fig. 6 Horizontal displacement at the free end

(B=90°)

T T e ANSY$(Non - linear)
=ErT e Single -RF
Multi - RF

o § 10 15 0
Angular Speed Q, (rad/s)

Vertical elastic deformation at tip (m}

Fig. 7 Comparison of vertical displacement at free
end (8=90°)

3.2 Natural frequencies

Figures 8-10 show the variation of the lowest
three natural frequencies of the angled-beam
structure versus the angular speed, when the angle
B is 0°, 45°, 90°, respectively. These results are
computed by employing single reference frame,
multi-reference frames and the commercial code.

Since the fully nonlinear finite element formu-
lation can be only employed to compute the
dynamic equilibrium position, the linear finite
element formulation should be employed for the
modal analysis.

Figure 8 shows that the results employing sin-
gle reference frame, multi-reference frames and
the commercial code are in reasonable agreement.
As shown in the figures, the natural frequencies
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Fig. 10 Lowest three natural frequency variations
versus angular velocity (£=90°)

increase as angular speed increases. This pheno-
menon is well known as the stiffening effect of the
rotating structures. However, as shown in Figs. 9
and 10, as the angle and the angular speed in-
crease, differences among the three results in-
crease. In the previous section, it was shown that
the dynamic equilibrium results employing multi-
reference frames are the most accurate results
among the three results.

Therefore, as the angle S of the structure and
the angular speed increase, the natural frequencies
employing multi-reference frames should be more
accurate than those obtained by employing single
reference frame and the commercial code.

Figure 11 shows the variation of the lowest
three natural frequencies of the angled-beam
structure versus the angular speed, when angle 3
is 90°. These results are obtained with and with-
out the generalized force due to geometric non
-linearity. In Fig. 12, 8-reference frames are used
for the case in which the geometric stiffening
effect is considered, and 16-reference frames are
used for the case that does not consider the
geometric stiffening effect. As shown in the figure,
if the geometric stiffening effect is considered, the
solution convergence can be obtained with less
number of reference frames.

To investigate the convergence trends, when
£2:=20rad/s and 8=90°, the lowest three natural
frequencies versus the number of reference frames
are tabulated in Table 2. 48-beam elements are

—— o — ANSYS
~~~~~~~~~~ Single - RF e
Multi - RF

x
&

£
[+3

Natural Frequeney (rad/s)
o
[=]

w
=1

20

[} 5 10 185 20
Angular Speed Q (rad/s)
Fig. 11 Natural frequency variations with and with-
out geometric stiffening (4=90°)
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Natural frequency variations with and with-
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Table 2 Convergence of natural frequencies versus
number of employed reference frames
RE With geometric Without geometric
stiffening effect stiffening effect
N @2 w3 W1 1 w2 ’ w3
2 6.40 | 34.61 | 63.77
4 6.97 | 41.85 | 87.41 | Negative eigenvalue
6 7.11 | 46.46 | 96.21
8 7.19 | 48.07 [103.21| 3.05 | 45.27 | 75.75
12 7.27 | 49.13 [106.72| 6.08 | 48.19 |100.23
16 7.33 | 49.51 |107.89| 6.72 | 49.00 |104.12

(£2s=20rad/s and 8=90°) (Units : rad/s)
used to obtain the results. In the cases which use
2, 4 and 6-reference frames, eigenvalues of the
system become negative when the geometric stif-
fening effect is not considered. In other words, the
mass or stiffness matrices of the system are not
positive-definite. This is a critical disadvantage of
the modeling method that does not consider the
geometric stiffening effect. If the geometric stif-
fening effect is considered, one can obtain the
converged natural frequencies with less number of
reference frames.

4. Conclusions

In this study, a modeling method employing the
multi-reference frames is proposed to find the
modal characteristics of flexible structures. The
modeling method can deal with the structures that

have complex configuration and consider the ge-
ometric stiffening effect due to large overall mo-
tion. The effect of reference frames to the modal
analysis accuracy is scrutinized through solving
numerical examples. The numerical studies show
that as the eccentricity of the structure and the
angular speed increase, the results employing the
multi-reference frames are more accurate than
results employing the single reference frame. And
if the geometric stiffening effect is considered  in
the modeling, it can obtain the modal analy-
sis accuracy using smaller number of reference
frames. It is also shown that the proposed mo-
deling method provides more accurate natural
frequencies than the commercial software.
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