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A Petrov-Galerkin Natural Element Method Securing
the Numerical Integration Accuracy
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An improved meshfree method called the Petrov-Galerkin natural element (PG-NE) method

is introduced in order to secure the numerical integration accuracy. As in the Bubnov-Galerkin

natural element (BG-NE) method, we use Laplace interpolation function for the trial basis

function and Delaunay triangles to define a regular integration background mesh. But, unlike
the BG-NE method, the test basis function is differently chosen, based on the Petrov-Galerkin
concept, such that its support coincides exactly with a regular integration region in background

mesh. Illustrative numerical experiments verify that the present method successfully prevents the

numerical accuracy deterioration stemming from the numerical integration error.
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1. Introduction

For several decades, finite element method has
been widely and successfully used to obtain ap-
proximate solutions of mathematical problems
encountered in most engineering and applied sci-
ence fields. The subdivision of a problem domain
into a finite number of elements, called finite
element mesh, provides a systematic way to define
basis functions, even for the extremely complex
domains. However, the use of finite element mesh
does also possess several inherent drawbacks, at
the same time, such as the requirement of the
element connectivity preservation, the numerical
quality deterioration or simulation incomplete-
ness owing to the excessive mesh distortion (Cho
and Lee, 2002), and the painstaking mesh adap-
tation process.
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In connection with these demerits of FEM,
many investigators have focused on the concept
of meshfree {meshless) method since Nayroles et
al.(1992) presented the diffuse element method
(DEM). As a result, this concept has been settled
down within a relatively short period of time, so
that its application to major engineering prob-
lems has been accomplished to some extent.
Among the meshfree methods introduced so far
are the element free Galerkin method (EFGM)
by Belytschko et al.(1994), the reproducing ker-
nel particle method (RKPM) by Liu et al. (1995),
the h-p clouds by Duarte and Oden (1996), the
partition of unity method (PUM) by Melenk and
Babuska (1996), and the meshless local Petrov-
Galerkin (MLPG) method by Atluri et al. (1998).

However, these methods suffer from the com-
mon difficulties in the numerical implementa-
tion, the enforcement of essential boundary con-
dition and the numerical integration. To resolve
the former difficulty stemming from the viola-
tion of the Kronecker delta property of basis
functions, the employment of alternative numeri-
cal techniques such as the penalty method (Zhu
and Atluri, 1998) and the Lagrange multiplier
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method (Belytschko et al., 1994) has been tried.
The latter difficulty requires the generation of
undesired background mesh so as to utilize the
Gauss
But, this kind of numerical integration causes the

conventional regular quadrature rule.
considerable integration accuracy deterioration
{Dolbow and Belytschko, 1999). One is because
the basis functions used in meshfree methods are
not polynomial but rational, the other is because
the support of integrand function does not coin-
cide with a regular integration domain within
background mesh. Here, the latter factor has been
reported to be more crucial than the former.

Recently, the natural element method based on
the natural neighbors (Braun and Sambridge,
1995) and the Bubnov-Galerkin approximation
is being explored as a possible solution to the
above-mentioned defects of meshfree methods
(Sukumar et al., 1998). In which, Laplace (or
non-Sibsonian) interpolation functions, which
are defined by the Voronoi diagram and the
Delaunay triangulation, are used for both trial
and test basis functions. Thanks to the Kronecker
delta property of Laplace interpolation func-
tions, essential boundary condition can be strictly
enforced for both convex and non-convex do-
mains without any additional numerical tech-
nique (Cueto et al, 2002). As well as, those
functions can be suitably constructed even for
irregularly distributed nodes, because those are
defined in terms of the geometry information of
nodes. Nevertheless, the Bubnov-Galerkin natu-
ral element method possesses the numerical inte-
gration difficulty as ever, because the support of
integrand function does not coincide with a regu-
lar integration region in background mesh.

In order to resolve the numerical integration
problem of natural element method, we introduce
an improved natural element method based on the
Petrov-Galerkin approximation. While Laplace
interpolation function is being taken for the trial
basis function, the test basis function in the
present method is differently defined such that its
support becomes a union of Delaunay triangles.
This approach eliminates the inconsistency of the
support of integrand function with the regular
integration domain, and which preserves both

. simplicity and accuracy in the numerical integra-

tion. The validity of the proposed method is
verified through the representative benchmark
experiments.

2. .Voronoi Diagram and
Delaunay Triangulation

We consider a two-dimensional Euclidean
space )2 for the sake of simple representation of
the Voronoi diagram and the Delaunay triangu-
lation. When a set & of N distinct points (or
nodes) : 8 ={x1, x2, -, xy | x;ER} is assumed
to be given, then its first-order Voronoi diagram
V; is defined by N Voronoi polygons wx such
that Vi={wi, ws -, wv| U Uoxy=%R}. In
which, the Voronoi polygon w; corresponding to
the /-th node is defined by

wr={xER  d(x, x1) <d(x, x;), VJ+I}(1)

with the Euclidean metric d (x, x;) in %2 (Green
and Sibson, 1978, Okabe et al., 1992).

Referring to Fig. 1(a), the /-th Voronoi poly-
gon @; is a sub-domain with its sides that per-
pendicularly bisect the lines connecting x; and
adjacent neighbor nodes. Vertex points of each
Voronoi polygon are called the Voronoi vertices,
and the domain enclosed by the outer lines con-
necting nodes is defined as the convex hull Q2%
(8) of N points. When node is located on the
boundary of the convex hull 2% &), its Voronoi
polygon becomes unbounded as shown in Fig.
1(a).

Referring to Fig. 1(b), the Delaunay triangu-
lation as a geometric dual of the Voronoi diagram
generates a set J of Delaunay triangles Ajxr (x)

S={Ame(x) I UAe =%, J+K+L}(2)

where J, K and L refer to the nodes Xx;, Xk and
Xx. become three vertices of Aj. In general,
the convex hull becomes the problem domain :
QM R) =0. Referring to Fig. 1(a), these three
vertex nodes should be chosen such that three
corresponding Voronoi polygons share common
edges. The reader may refer to Okabe et al
(1992) for the discussion on the geometric dual
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Fig. 1 Representation: (a) Voronoi diagram and Delaunay triangulation ; (b) Delaunay circumcircles

relation between J and V;. An important prop-
erty of the Delaunay triangulation is the empty
circumcircle criterion implying that individual
Delaunay circumcircles should not contain any
node in 8. Also, it is worth to note that the
centers of these circumcircles identically become
the Voronoi vertices.

Referring to Fig. 1(a), the Voronoi polygon w;
shares its sides with five Voronoi polygons, and
such neighborhood polygons are cailed the natu-
ral neighbors of w,. In the same manner, the five
nodes within five natural neighbors of w; are
defined as the natural neighbors of the node Xx;.
These natural neighbors serve a basis for con-
structing Sibsonian interpolation functions. The
concept of the natural neighbors and the Sib-
sonian interpolation was introduced by Sibson
(1980) originally for curve fitting and smoothing.

3. Non-Sibsonian Interpolation and
Laplace Interpolation Functions

As another interpolation method based on the
natural neighbors, there exists the non-Sibsonian
(or, called Laplace) interpolation introduced by
Belikov et al.(1997) and Hiyoshi and Sugihara
(1999), from which Laplace interpolation func-
tions are derived. In both Sibsonian and non-
Sibsonian interpolation, the second-order Voronoi
diagram Vj; is commonly introduced to define

Delaunay
e circumcicle

interpolation functions. Referring to Fig. 2(a), let
us consider a point xp in the first-order Voronoi
diagram depicted in Fig. 1(a). Then, this point
does also define a new first-order Voronoi poly-
gon @p, and which is divided into four sub-
regions by the previously defined Voronoi poly-
gons w;. These sub-regions are called the second-
order Voronoi cells wp; which are geometrically
defined by

war={xER . d(x, xp) <d(x, x1) <d(x, x;),

VJ+P, I} 3)

The second-order Voronoi diagram is defined
based on the first-order Voronoi diagram V; but
the number of wp; is not identical with the num-
ber of nodes, so that the shapes of Voronoi poly-
gon wp and corresponding second-order Voronoi
cells vary with the choice of point xp.

In the Sibsonian interpolation method, inter-
polation functions are defined in terms of the
relative area ratios of wper to the total area of we,
as described in Sukumar et al.(1998). On the
other hand, Laplace interpolation functions in the
non-Sibsonian case are expressed in the slightly
different manner. Referring to Fig. 2(b), we first
introduce the weighting functions @; defined by

Sz (xp)

ar(xp) —m, =12 - M (4)

where hr=d (xp, Xr)/2 and s; denotes the length
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Fig. 2 Definition: (a) second-order Voronoi cells of xp ; (b) geometric definition of the polygon we

of the side Ip;. Here, the subscript [ designates
the edge of wp facing to the node number x;
and M denotes the number of natural neighbors
of the polygon wp. Then, the values of M Laplace
interpolation functions at the point xp are deter-
mined through

b (x) =0 (x) /B (), T=1, 2+, M (5)

In numerical implementation aspects, the com-
putation of Laplace interpolation functions at the
specific point (usually at Gaussian point) is more
effective, when compared to Sibsonian interpola-
tion functions, because it requires only the calcu-
lation of lengths.

In this manner, we can define all Laplace in-
terpolation functions for a given set & of N
nodes. It is worthy noting that the total number
of functions coincides with the total node num-

T

N

/]
yay

/

(a)

ber. Since xp is an arbitrary point in the Voronoi
diagram V;, we drop the subscript P in Xxr
hereafter. When we restrict to the /-th Laplace
interpolation function ¢;{(x), its support be-
comes the intersection of the convex hull Q¥ R).
shown in Fig. 1(b) with the Delaunay circum-
circles defined by the node x; and its neighbor
nodes (Farin, 1990):

supp(dr(x)) =Ucir (Age(x)) NQLHR) (6)

The support of the Laplace interpolation func-
tion with respect to its node position within a
uniform grid is illustrated in Fig. 3(a). Where,
two nodes J and K have the supports bounded by
the convex hull of nodes. Fig. 3(b) represents
three Laplace interpolation functions ¢;, ¢; and
¢k plotted according to Eq. (5). Where, we see
that ¢; becomes peak at node [ and vanishes at

Fig. 3 Uniform grid: (a) function supports; (b) function shapes
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the boundary of its support. On the other hand,
@, does also vanish at the boundary region supp
(¢s) NI" and ¢« shows a linear variation along
the boundary. These features of Laplace inter-
polation functions will be described in details in
Section 4.2.

Referring to Eq. (5), together with the plots of
¢1(x) shown in Fig. 3(b), Laplace interpolation
functions possess the following basic properties :

0<¢;(x) <1 : positivity (7

d1(x;) =81 . Kronecker delta (8)

g@(x) =1, VXEQ | partition of unity (9)

N
x=§l dx)x, . linear consistency (10)

Three properties (7)-(9) can be easily realized
from the definition (5), while the last property
'(10) implies that any bilinear field can be exactly
preserved by the Laplace interpolation (Piper,
1993). On the other hand, one can easily derive
the spatial derivatives of ¢;(x) given by

d’l,ﬂ(x) —¢: (x) ga’l,ﬁ(x)
gdt(-@

bre(x) = , B=x.y (11)

with e (x) =Ls16(x) —arhis(x) ]/ 7 (x).
spatial derivatives of /; and s; are obtained by

Here,

differentiating the corresponding line equations
that are defined with the geometric co-ordinates
of two end points.

4. Petrov-Galerkin Natural Element
(PG-NE) Method

We consider a two-dimensional linear elastic
material occupying the domain QER* for the
current study. Then, its deformation field u is
governed by

Oap(Ut) g+ ba=0, in Q (12)
equipped with
Ua=THa, on I (13)

Oasts=la, on Iy (14)

Here, b is the body force and n the outward unit
vector normal to the boundary I'=15Uly. And,
the constitutive and compatibility relations are

Oas= CaprsEys (15)
578:(u7,8+ ua,y) /2 (16)

with the material constant tensor C. The virtual
work principle converts the boundary value
problem (11) to the variational formulation :
Find u such that

fg Gap (1) €02 (v) dQ= /9 baved -+ fr Lovads (17)

for every admissible virtual displacement v.
In order for the natural element approximation,
trial and test functions are expanded as

a (%) = 22k (x) (18)
ve(X) = Z 041 () (19)

for a given natural element grid composed of N
nodes (refer to Fig. 1(a)). Introducing Egs. (18)
and (19) into Egs. (15)-(17) leads to

%}K’azép (20)

with the (2N X 1) nodal vector iz and the node-
wise matrices defined by

K'=[ (D¥)"C(D0)dQ (21)

1__ T T
F —/m;rf bdQ+/Pm%§If Fds (22)

in which &) =supp(¢:(x)) and D is the (3X2)
divergence-like operator defining Cauchy strain
tensor. And, two matrices ¥ and @ are

RIS

o[22 21 )]

Eq. (20) implies that the numerical integration in
natural element methods is carried out over the
support of each test basis function.

In the BG-NE method, Sibsonian or non-Sib-
sonian interpolation function is used commonly
for both trial and test basis functions. But, for the
current PG-NE method, while using Laplace
interpolation function for trial basis function,
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we use different functions supported on Delaunay
triangles for test basis function. By using different
basis functions in this manner, we intend to
achieve both the numerical integration accuracy
and the easy application of conventional Gauss
quadrature rule.

4.1 Numerical integration in the PG-NE

method

The numerical integration in most meshfree
methods is usually performed by the Gauss quad-
rature rule devised for conventional finite element
method, and for which the construction of back-
ground meshes is an indispensable requirement.
Since a background mesh in the natural element
method is automatically constructed with De-
launay triangles generated a priori in the defini-
tion process of basis functions, additional efforts
for constructing background mesh are not re-
quired differing from the other meshfree methods.
However, the BG-NE method still suffers from
the numerical integration inaccuracy owing to the
discrepancy between the support of test basis
function and the integration domain of the regu-
lar triangular finite elements. As pointed in a
book by Strang and Fix (1973), the numerical in-
tegration using the Gauss quadrature rule shows
the deterioration in both numerical accuracy and
convergence rate when the support of integrand
function does not coincide with a regular integra-
tion region in background mesh.

Let us consider a uniform grid in order to ex-
amine the case of the BG-NE method. As shown
in Figs. 3(a) and 4, neither the support of test
basis function ¥; nor the intersection £2%; be-
tween ¥y and ¢y does not coincide with a union
of Delaunay triangles to which the regular Gauss
quadrature rule is applied. As a result, one en-
counters the numerical difficulties in calculating
K’ and F' in Egs. (21) and (22). In order to
overcome this problem, Dolbow and Belytschko
(1999) employed the bounding box technique to
construct a background mesh in which the regular
integration domain exactly coincides with the
support of test basis function. However, not only
such a background mesh is hard to construct
owing to the geometric complexity of 2%, but

o °. ©
? ;

N N N

Fig. 4 Intersection region £} between test and trial
basis functions in the BG-NE method

also it is difficult for such a complicated back-
ground mesh to seek an appropriate quadrature
(1994)
transform the irregular integration regions com-

rule. Meanwhile, Traversoni tried to
posed of Delaunay circumcircles into regular
ones. However, this approach requires a consi-
derable complexity in deriving the mapping func-
tions.

On the other hand, the PG-NE method uses the
constant strain finite element (CS-FE) basis
function as the test basis function. Referring to
Fig. 5(a), its support is composed of a union of
Delaunay triangles, so that the discrepancy be-
tween the regular Gauss integration domain and
the test function support does not occur any more.
Thus, the integration of F’ in Eq. (22) can be
accurately and easily performed as in conven-
tional finite element method, without requiring
any additional numerical technique. Further-
more, the intersection region £%, between the
CS-FE basis function ¢y and Laplace basis func-
tion ¢; is always contained within supp(¥:).
Thus, one can accurately and easily obtain K'in
Eq. (21) by applying the Gauss quadrature rule,
as in the finite element method.

For reference, three shape functions e sup-
ported on individual Delaunay triangles are easi-
ly defined by

Fulx, v)={(xays—2532) + (32— v) x + (rs— 1) y}/24 (25)
lﬁz(x, y):{<x3y1—X1Y3>+(YS_J’1)X‘|'(X1"X3>3’}/2A (26)

1}\3()6, y)={(x1yz—xzy1) + <)’1_YZ>X+ (xz—X1)y}/2A (27



100 Jin-Rae Cho and Hong-Woo Lee

Fig. 5
basis functions

Here, three points x;, X2 and X3 are three vertices
of triangle (in the counter-clockwise direction)
and the triangle area A is calculated according to

A={(x1ys) (32— y3) — (a—23) (y1—y3) }/2 (28)

4.2 Imposition of essential boundary condi-
tions

As illustrated in Fig. 3, Laplace interpolation
functions (e.g. ¢; (x)) of the nodes close to the
boundary vanish along the boundary. In order to
explain this property, let us consider a point xp
located on the boundary supp(¢;) NI". Then,
referring to Fig. 6(a), this point leads to an
unbounded Voronoi polygon wp with two sides
of infinite lengths s; and sx. As a result, the

h Yy Xy

X

Fig. 6
boundary

\\ J N
O\
(RNANAN

(b)

In the PG-NE method : (a) CS-FE basis function ; (b) intersection region 2% between test and trial

denominator of Eq. (5) becomes infinity while a;
(xp) being kept a finite value, so that we have

lim ¢é;(xpr) =0, on I'Nsupp{¢;) (29)

Sp)Symoo

On the other hand, Laplace interpolation func-
tions (e.g. dx(x)) of the nodes on the boundary
vary from unity at their own nodes to zero at their
neighbor nodes along the boundary. Referring to
the unbounded Voronoi polygon wp of xp shown
in Fig. 6(b), one can realize that @, and an
become to be negligible because sx and sy are of
infinite lengths. Consequently, Eq. (5) becomes

¢x(xp) = (sx/hx) / (sx/ hx+sn/hn) (30)

Taking the limit process, we have

@p

‘\ ‘ /
e B
' !(x A
{JN‘\_/.}z,g

o 1ox ] &

(b)

Unbounded Voronoi polygons wp: (a) for the nodes close to the boundary ; (b) for the nodes on the
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%, on I'Nsupp(dx) (31)

This clearly shows the linear variation of ¢x
along the boundary supp(¢x) NI .

The above two features (29) and (31) do also
hold for Laplace interpolation functions in non-

lim ¢k (xp) =1—

SprSy—®

convex domain. Let us consider a node I shown
in Fig 7, where the region of Delaunay circum-
circles that is outside of the boundary is not
included in the support of ¢; by virtue of the
definition (6). Thus, the Laplace interpolation
function is not defined in the region outside the
boundary, and it possesses a linear variation
along the non-convex boundary according to the
same argument explained above for the convex
domain. The explanation for Laplace interpola-
tion functions of the internal nodes close to the
non-convex boundary, that is for the feature (29),
is also the same as for the case in convex domain.
Thanks to these interpolation features of Laplace
functions, one can easily enforce the essential
boundary conditions by simply assigning the
specified values #. to the corresponding bound-
ary nodes. In other words, the imposition of
essential boundary conditions in the natural ele-
ment method can be accomplished in the same
manner as in conventional finite element method.

However, this simple imposition may be bro-
ken down for the nodes on the non-convex
boundary because the linear consistency along the
boundary does not hold any longer (Cueto et al.,
2002). In order to illustrate this situation, let us
consider a non-convex boundary shown in Fig. 8.
Where, the line segment I;-; is prescribed to have

zero displacement while the remaining part is
assumed to be free boundary. Here, we restrict
four neighbor nodes of node I, two boundary
nodes and two internal nodes, for explanation
purpose, then we have three Delaunay triangles
and Delaunay circumcircles. Within this restricted
grid, Laplace interpolation function ¢; has the
support given by

Supp<¢1> = (C”(AIJK) Ucir {Am) U (Ape)) NQH(R) (32)

The supports of other four Laplace interpolation
functions can be easily realized from the defini-
tion (6). Since two functions @x and ¢y vanish
on the boundary by virtue of the feature (29),
those do not cause any trouble even in non-con-
vex boundary. But, since Laplace interpolation
function ¢; does not vanish along the line seg-
ment [7_;, the displacement interpolation along
this segment is expressed by

e (x) =l dr(x) +ut ¢y (x) +us ¢ (x), on I1-;(33)

Thus, the prescribed essential boundary condition
can be satisfied only when the nodal values &
are enforced to be zero. But, this enforcement is
not possible because the free boundary condition
is prescribed on the line segment I7_;.

This difficulty in dealing with the essential
boundary condition specified on the non-convex
boundary can be resolved by employing the algo-
rithm proposed by Sambridge et al.(1995). Ac-
cording to this algorithm, any two Delaunay
circumcircles can not be overlapped when their
Delaunay triangles do not share a common edge.
Now, let us examine three Delaunay circumcircles

¥ ¢1 (X)

(b)

Fig. 7 Laplace interpolation function in non-convex domain
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non-convex
boundary

region affected by 4,
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Fig. 8 Disobedience of the linear consistency along
the non-convex boundary

shown in Fig. 8. We can find out that the De-
launay circumcircle ci7 (Ayx) can be overlapped
with the Delaunay circumcircle ¢z (Axy) but it
can not be overlapped with the Delaunay circum-
circle ci# (Apy). Thus, the overlapping between
civ (Apyk) and civ (Apn) can not be defined, so
that the region denoted by £24; can not be the
support of the Laplace interpolation function
¢ (x). Then, the Sambridge algorithm allows us
to have

e (X)=ubd(x) +ubd;(x), on I1_; (34)

As a result, one can impose the essential bound-
ary condition specified on the non-convex bound-
ary as easily as in the convex boundary.

5. Numerical Experiments

A test Fortran program was coded according to
the numerical formulations described in previous
sections, and it was interfaced with pre- and post-
processing modules of ANSYS commercial code
(Ansys, Inc., 1998) for grid generation and gra-
phic visualization. Restricting to the two-dimen-
sional linear elasticity, we perform both the patch
test and the convergence assessment. For the con-
vergence evaluation, we use the relative energy-
norm error defined by

il [l =o(0) ) -l o]
| [eolistingg)”

T (33)

with the exact solution denoted by u. To each
Delaunay triangle in the background cell, we
use 3 Gauss points for the numerical integration
and 13 Gauss points for the post-processing of
strains, stresses and energy—norm errors. In order
to obtain smoother and continuous strain and
stress fields, we perform the stress recovery of the
nodal stresses by the stress projection method
(Zienkiewicz and Taylor, 1989), because strain
and stress fields approximated display jumps at
individual nodes, as presented in the numerical
results by Sukumar et al.(1998) . Material proper-
ties for all the model problems considered here
are commonly taken as follows : E=2.0X10"Pqg
and v=0.3.

5.1 Patch test

We consider two simulation cases shown in
Figs. 9(a) and 9(b) for the patch test of the PG-
NE method, where both problems are in plane
stress condition. Through the displacement patch
test with 2x=u,=1X107% m, we intend to exam-
ine the attainment of uniform strain and stress
fields. On the other hand, we check the uniaxial
plane stress field in the equilibrium patch test for
which uniform normal traction f,=1.0Pz is ap-
plied to the right side. Figure 10 represents uni-
form and non-uniform grid patterns prepared for
both patch tests. We simulate two patch test
problems by PG-NE and BG-NE methods, with
both grids, and we compare the numerical re-
sults.

The PG-NE method provides the relative ener-
gy-norm errors close the machine precision of O
(1071 in four simulation cases, as recorded in
Table 1, so that it passes the patch test. On the
other hand, we see that the BG-NE method does
not pass the patch test with the considerably high
level of relative energy-norm errors. Reminding
the linear consistency property (10) of Laplace
interpolation functions, we can confirm that the
patch test failure in the BG-NE method is owing
to the numerical integration error. While, this
critical integration error is completely eliminated
in the PG-NE method according to the use of
Delaunay-triangle-based test functions. In papers
by Sukumar et al.(1998) and Cueto et al.(2002),
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Fig. 9 Models for the patch test: (a) displacement patch test; {(b) equilibrium patch tes
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Fig. 10 Grid patterns for the patch test: (a) uniform; (b) non-uniform

Table 1 Relative energy-norm errors | u— u” | g0/
|l ullsa in the patch test

BG-NE -
Test type Grid m(;thod lr::q(;]thNog
Displacement | Uniform 32E—02 | 1.32E—15
Non-uniform | 6.53E—02 | 9.14E—16
Equilibrium | Uniform 476E—02 | 1.08E—14
Non-uniform | 415E—02 | 1L42E—15

the assessment of numerical integration accuracy
of the BG-NE method using Sibsonian interpola-
tion functions is addressed in details.

For the displacement patch test with the uni-
form grid, we compare distributions of the effec-

tive stress between the BG-NE and the PG-NE
method in Fig. 11. Contrary to the PG-NE meth-
od, the BG-NE method leads to the non-uni-
formity in the stress field, particularly at four
edges. This non-uniform stress field by the BG-
NE method was commonly observed in the re-
maining three patch test cases. In general, the
numerical error and the resulting non-uniformity
in stress field owing to the inconsistency of the
integrand support with the regular integration
region do commonly occur in other meshfree
methods. For an example, the EFGM using hig-
her Gauss-Legendre quadrature rule with rectan-
gular background cell leads to the relative L’-
norm error in the range of O (107 (Dolbow and
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Fig. 11 Distributions of the effective stress in the displacement patch test with the uniform grid: (a) BG-NE

method ; (b) PG-NE method
Belytschko, 1999).

5.2 Experiment for the convergence assess-
ment

We next consider an infinite plate with a circu-
lar hole, which is subject to unidirectional ten-
sion in the x-direction under plane strain condi-
tion. Its numerical analysis model with finite
dimensions 2L X2L is depicted in Fig. 12, to-
gether with geometric dimensions and traction
boundary condition. Referring to a book by
Timoshenko and Goodier (1970), we have exact
solutions of the problem with £y of 1.0Pa:

u(7, ) =i[€(x+])cos g »
2q 27
+7{(K+l)cos G+cos 30}~7cos 30}

uy(7, ) =&{%(/f~3)sin0
2 27 (37)
+7{(—x+1)sin ¢9+sin30}—751n 36}

2 4
Oe(7, 6) =1—%<%cos 204cos 49>+;—z4cos 46 (38)

2
owl7, §) =—%<%cos 26-cos 40) -

3 4
z—icos 46 (39)

a1 AT
o7, 0)———;<7sm26+sm40>+—43m46 (40)
r 2r

where g is the shear modulus. And, k is the
Kolosov constant defined by #=(3—v)/(1+V)

‘— /\\/ —
ty e / <0 x ,

a =1lm d
] L=5m L
tx=1Pa
P by
Fig. 12 Plate with a circular hole under unidirec-

tional tension

in plane strain condition and = (3—y) in plane
stress condition. Fig. 13 represents two grid pat-
terns used for the convergence analysis, where
the locally refined grid was generated from the
almost uniform grid shown in Fig. 13(a) by
adding more nodes in the vicinity of circular hole.

Convergence rates of the relative energy-norm
error in the BG-NE and the PG-NE methods are
represented in Fig. 14(a) for the uniform grid and
Fig. 14(b) for the locally refined one, respective-
ly. The PG-NE method shows smaller energy-
norm errors in the absolute magnitude and more
steep convergence rates than the BG-NE method
for both grid patterns. Meanwhile, the conver-
gence rates in the BG-NE method deteriorate
with the grid density increase, contrary to the
PG-NE method possessing uniform convergence
rates. In connection with the previous patch test,
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the affection of numerical integration error in the
BG-NE method is also manifest from the conver-
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Fig. 14 Convergence rates in the energy-norm sense :
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Distributions of local energy-norm errors (locally refined grid with 1,569 nodes) : (a) PG-NE

method ; (b) BG-NE method
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has been justified once more.

Figures 15(a) and 15(b) show distributions of
the local energy-norm errors | u— u” | zx) defined
by

lu—u" [z

L e =) (s )] ™ 4V

in the PG-NE and the BG-NE methods, respec-
tively. In Eq. (41),
within individual Delaunay triangles. In the PG~

X denote 13 Gauss points

NE method, relatively high local errors are con-
centrated around the circular hole edge, and
which is a typical pattern observed commonly in

standard finite element method owing to the stress
concentration in the vicinity of circular hole. On
the other hand, the BG-NE method produces a
widespread error distribution, particularly along
two diagonals of the plate as well as the circular
hole edge. Thus, one can clearly see that the nu-
merical integration error occurs over entire prob-
lem domain, regardless of the stress concentra-
tion.

Figure 16(a) compares the distributions of
normal stress Oxx with the exact solution, along
the line A-B in Fig. 12. Where, both the BG-NE
and PG-NE solutions were obtained with a
locally refined grid composed of 1,569 nodes. The

304 9 ——  Analvtic solution e Anal}:tic solution
o PG-NE method 304 ©  PG-NE method .
A BG-NE method = & BG-NE method

5 £
= 254
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Fig. 16 Comparison of stress distributions with exaction solutions : (a) normal stress gxx along the vertical line

A-B; (b) effective stress along the circular path C-A

172 E-01
418E-02
-961E02

-2.34E-01

~3.72E-0

~SA0E-61

-6.48E-01

~7.86 E-01

(a)
Fig. 17 Contours of the shear stress 0x (locally refined grid composed of 1,569 nodes)
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normal stress distribution obtained by the PG-
NE method is shown to be in excellent agree-
ment with the exact one. But, the BG-NE method
not only shows a remarkable discrepancy in the
peak stress value but also noticeable oscillations
in the distribution. Referring to Fig. 16(b) re-
presenting the comparison of the effective stress
distributions with the exact solution, along the
circular path C-A, both the BG-NE and the
PG-NE display the considerable oscillations near
=0 and 7/2. As is well addressed in a paper by
Cho and Oden (1997), finite element solutions
commonly display the oscillation behavior, while
being suppressed by using locally refined meshes
to a certain extent, in stress distributions where
the boundary layer singularity exists. However,
the BG-NE method produces more significant
oscillations than the PG-NE method, and which
can be explained by the numerical integration
error because the same grid was used for both
methods.

The oscillation phenomenon caused by the nu-
merical integration error in the BG-NE method
can be clearly observed from the comparison of
shear stress distributions shown in Fig. 17 be-
tween the BG-NE and the PG-NE methods. The
oscillation pattern in the stress contour by the
BG-NE method is shown to be closely consistent
with the local error distribution shown in Fig.
15(b). As is worse, the BG-NE method leads to
the peak shear stress value 0.192Pa which re-
markably deviates from the exact solution 0.176
Pa, when compared to 0.172Pa obtained by the
PG-NE method.

6. Conclusion

A natural element method based upon the
Petrov-Galerkin approximation concept, so call-
ed the PG-NE method, has been introduced, in
order to secure the numerical integration accura-
cy. To define a test basis function we used the
Delaunay-triangle-supported constant strain fi-
nite elements, while employing Laplace inter-
polation functions based on the natural neighbors
for trial basis functions. A combination of the
Delaunay-triangle-supported background cells

and test basis functions exactly coincides the in-
tegrand function supports with the regular Gauss
integration regions, so that the inherent numerical
integration errors occurred in most mesh free
methods has been successfully eliminated. As well
as, the imposition of essential boundary condi-
tions has been directly and strictly accomplished
according to the basic properties of Laplace
interpolation functions, even for non-convex
boundaries.

From the 2-D linear elasticity benchmark tests,

we confirmed that the PG-NE method does not
suffer from the numerical integration inaccuracy
at all such that it provides the very accurate
energy-norm error close the machine precision.
While, the BG-NE method has shown to be
significantly influenced by the numerical integra-
tion error. In the convergence assessment experi-
ment, the PG-NE method provides higher and
uniform convergence rates, when compared to the
BG-NE method showing the convergence deter-
ioration non-uniformly with the grid density
increase owing to the existence of numerical inte-
gration error. The comparison of distributions of
stresses and local energy—norm errors has clearly
justified the numerical integration accuracy of the
PG-NE method. Contrary to the BG-NE method
causing the widespread fluctuations in those
distributions, the PG-NE method shows the fluc-
tuation stemming from only the boundary layer
that is restricted in the vicinity of the circular hole
edge. .
The non-symmetry of stiffness matrix, a draw-
back of the PG-NE method, is an indispensable
penalty to pay for achieving both the numerical
integration accuracy and the direct imposition of
essential boundary condition. Furthermore, it is a
less critical issue nowadays thanks to the ad-
vances in both computation facilities and tech-
nologies like parallel computing.
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