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The multiscale wavelet-Galerkin method implemented in an adaptive manner has an advan-
tage of obtaining accurate solutions with a substantially reduced number of interpolation points.
The method is becoming popular, but its numerical efficiency still needs improvement. The
objectives of this investigation are to present a new numerical scheme to improve the perform-
ance of the multiscale adaptive wavelet-Galerkin method and to give detailed implementation
procedure. Specifically, the subdomain technique suitable for multiscale methods is developed
and implemented. When the standard wavelet-Galerkin method is implemented without domain
subdivision, the interaction between very long scale wavelets and very short scale wavelets leads
to a poorly-sparse system matrix, which considerably worsens numerical efficiency for large~
sized problems. The performance of the developed strategy is checked in terms of numerical costs
such as the CPU time and memory size. Since the detailed implementation procedure including
preprocessing and stiffness matrix construction is given, researchers having experiences in
standard finite element implementation may be able to extend the muitiscale method further or

utilize some features of the multiscale method in their own applications.
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1. Introduction

The main advantage of the wavelet-based nu-
merical method over the standard finite element
method is that the wavelet method allows efficient
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adaptive analysis when the method is implement-
ed in multiresolution. There have been several
wavelet formulations to utilize the difference-
checking nature of wavelets in developing mul-
tiresolution adaptive strategies (see Glowinski et
al., 1994 ; Bertoluzza, 1997 ; Cohen and Masson,
1999 ;: Cohen et al., 1998 ; Diaz, 1999 ; Dahmen,
2001) Although any wavelet may be used as the
multiscale trial basis in Galerkin formulation, the
hat interpolation wavelets employed by Christon
and Roach (2000) and Jang et al.(2004a) have
the simplest functional forms, and do not pose
much difficulty in handling general boundary
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conditions. Christon and Roach (2000) have
shown that the hat interpolation wavelets are
stable in H' and quite effective for problems
with dominant elliptic characteristics. Jang et al.
(2004a)
adaptive method that can handle general bound-

have recently proposed a multiscale

ary conditions prescribed along curved bound-
aries. An interesting application of the multiscale
adaptive analysis is made in shape optimization
problems based on the fixed-grid method by Jang
(2004) and Jang et al.(2004b). Since shape opti-
mization involves the analysis of boundary-mov-
ing-problems, element-level multiscale methods
such as the isoparametric-mapping-based method
usually suffer from mesh distortion and remeshing
difficulty. However, the fixed-grid-based mul-
tiscale method does not have such problems be-
cause the mesh is fixed throughout the optimiza-
tion.

One drawback of the fixed~grid-based multi-
scale method is that it generally requires more
computation time to construct the system matrix
than the standard single-scale Galerkin method
does. The wavelet integration rule by Latto et al.
(1991) may not be used when the area of numer-
ical integration involves more than one material
as in the fixed-grid method. It is a common ap-
proach to construct a single-scale stiffness matrix
first, and then to transform it into a multiscale
version. However, the transformation requires a
significant amount of CPU time and resources
especially when the system is large-sized. More-
over, the sparsity of the resulting multiscale sys-
tem matrix is considerably poor in comparison
with the single-scale system matrix. The increased
computation time and poor sparsity of the system
matrix may overshadow the advantage of multi-
scale wavelets gained by the intrinsic adaptive
characteristics. Thus, reducing the computational
cost to construct and solve the multiscale system
equation is critical to expand the wavelet-based
multiscale method. Based on this motivation, we
aim to develop an efficient implementation strat-
egy for the fixed-grid-based multiscale wavelet-
Galerkin method.

For the present multiscale formulation, the an-
alysis domain is decomposed into several sub-

domains. Single-scale stiffness matrices are con-
structed and transformed into multiscale stiffness
matrices separately for each subdomain. If the
analysis domain is treated as a whole and no sub-
domain is introduced, the multiscale conversion
process of the stiffness matrix requires tremendous
amount of memory size as well as a substantially-
increased computation time. The main role of the
domain subdivision in the multiscale method is
that the number of scales involved in each sub-
domain reduces as the number of subdomains
increases. Therefore, the sparsity of the multiscale
stiffness matrix can improve considerably. This
will be explained clearly in the section discussing
actual implementation procedure.

Since our main concern is the development of
an efficient implementation strategy for the fixed-
grid-based multiscale method, a detailed imple-
mentation procedure will be presented. There are
some reports explaining the implementation pro-
cedure of the multiscale method, but (bi-) ortho-
gonal wavelets, not the hat interpolation wavelets,
are mainly considered. In this work, our wavelet-
Galerkin implementation strategies will be pre-
sented for two-dimensional elasticity problems,
and the work by Jang et al.(2004a) will be used
as the starting point for our development.

2. Interpolation Wavelet-Galerkin
Formulation

In this section, the interpolation wavelet-
Galerkin formulation without domain subdivi-
sion or element-wise multiscale transformation
will be introduced. The formulation framework is
based on the development by Jang et al.(2004a).

2.1 Hat interpolation wavelets for multi-
resolution analysis

The hat interpolation wavelets form the lowest-

order basis which satisfies the multiresolution

properties (see Mallat (1998) for the detailed

discussion of the multiresolution analysis.) The

one-dimensional hat interpolation scaling func-
tion ¢(x) is expressed as:

b= 3 hug(2x—h) ()
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Fig. 1 The hat interpolation functions: (a) scaling

~1 0

functions ¢, at the resolution level j=1,
(b) wavelets ¥, at j=1, and (c) scaling
functions ¢y, at j=2

where the coefficient /. is given as £_,=0.5, iy=
1, 7:=0.5, and %h,=0 for other k’s. Note that
¢ (x) satisfies the following interpolation pro-

perty

Lif n=0

0else (nEZ) (2)

¢<n)={

The wavelet ¥ (x) is to be introduced to describe
the difference between solutions at high and low

resolution levels :
¥ (x)=¢(2x—1) (3)
Uie(x) =¥ (2x — k) = 112011 (%) (4)

where the indices j and % denote the resolution
level and the translation of the wavelet, respec-
tively. Figs. 1(a) and (b) illustrate the one-di-
mensional hat interpolation scaling functions and
wavelets at the resolution level j=1. Fig. 1{c)
depicts the hat interpolation scaling functions at
the resolution level j=2. Although the basis of
@2, and the basis of { d1.x, ¥1.x} spans the same
space, only the basis of { @1z, ¥} is multiscaled.

(d) #hoo

(©) o
Fig. 2 The two-dimensional hat interpolation func-
tions on 2=[0, 1] x [0, 1]

Two-dimensional hat interpolation wavelets
can be constructed by the tensor product of the
one-dimensional wavelets. The two-dimensional
scaling function ¢(x) and wavelets ¥(x) are
expressed as

binalx, ) =4 Qx—B) $@y=D ()

Vin (2, ¥) = Vi (x) 50 () (6a)
Yina (x, J’) =G50 (%) ¥ (v) (6b)
Yin (x, ) = (x) U5, () (6c)

Fig. 2 illustrates the function shapes of some
two-dimensional scaling function and wavelets
defined on [0, 1] X [0, 1]. Since ¢, ¥* and ¢* are
the wavelets capturing the differences in the hori-
zontal, vertical and diagonal directions, they are
often called the horizontal, vertical and diagonal
wavelets, respectively.

2.2 Multiscale wavelet-Galerkin formula-
tion based on the fictitious domain ap-
proach

Fig. 3 describes a general two dimensional

elastic problem defined on an elastic domain @. A
surface traction t is prescribed on the boundary
I} while displacements are prescribed on I3.
The weak formulation for the problem is written
as
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Fig. 3 The elasticity problem with a package do-
main w embedded into a fictitious domain £

Fine u&S, for all ve& V,

/(;e(v) (C:e(u) dw:,/,;f.de—l_./I:ZE'Vde (7)

with

Sa)z{ Z{iEH1<(1))| U—4g; on Ff, izl, 2}
Vo={vi€H"(w)| v:=0 on I'¥, {=1, 2}

where C denotes the elasticity tensor &, the strain
tensor and H?, the Sobolev space of degree 1.

To be able to handle arbitrarily-shaped bound-
aries, we introduce a rectangular fictitious do-
main &2, and embed w inside £2. In the domain 2,
the elasticity tensor C and the body force f are
redefined as

[ Cinw
Cg_{yc in Q\w ®)
and
_[finw
f”_{o in Q\w ©)

where 7 is a small parameter.

Introducing the fictitious domain £2, the weak
formulation in Eq. (7) can be approximated as
the problem of finding for ugE Sy all vo& V!

[eva) : Cat e(ug) a2
2 (10)
szg'Vnd.Q+/t'V9dF

2 A

with
So={ ua:SH Q)| uo:i=g; on I'f, i=1, 2}
V;):{UmEHl(Q” v9:=0 on [g, Z'=l, 2}

It is true that the solution accuracy and conver-
gence are affected by the value of y. Jang et al.
(2004a) numerically showed that if y is below
0.001, the solution difference between Eq. (10)
and the original problem is negligible.

To obtain the multiscale discretized equation,
the single-scale discretized equation may be first
derived from (10) by using the hat interpolation
scaling functions ¢;,.(x) as the basis functions
at the resolution level J.! The discretized solution
uj at the resolution level J can be expressed as

ufp=§5j,k,z¢j,k,z(X, v) (1la)

or

J
Ug,x Sx:J k1
[ =g " gate, )
Ug,y &L Sy gk
In the vector-matrix form, Eq. (11a) can be writ-
ten as

ub(x, v)=N;(x, y)- U, (11b)

where N; is the matrix consisting of scaling
functions (or bilinear shape functions), and the
vector ﬁ] is a solution vector consisting of Sx.J,x,:
and Sy.jx. By using the same expression for v}
as in Eqs. (11), and substituting both expressions
into the weak form in (10), the following single-
scale system equation can be obtained :

K0,=F, (12)

with
&= [(N,)"L'D,LN,d2
Q

where K, and ¥, denote the single-scale system
stiffness matrix and the single-scale force vector,
respectively. In the above, D is the matrix form
of Cg in Eq. (8), and L denotes the usual dif-
ferentiation operation.

1 For the resolution level J, the shorter edge of the
rectangular domain £ has 2/4+1 equally-spaced
nodes.
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To carry out the wavelet-Galerkin analysis in
multiscale, we must express ub in the following
multiscale form by using the wavelet basis func-
tions ¢ and ¢ :

up=23s;

k,l

ot Pigrt (X, ¥)

2 ZEdthmt(x y)

JJo”ll

(13)

or

u!) x Sx:0.k,L
{ } { o }¢jo,k,l (?C, y)
ug,y BLU Sy jo kbt

+5; iz{d’“"“}m, (x, ¥)

J=Fom=1k,1 dyjok,l

where the scale index j for wavelets ranges from jo
to (Jo is usually set to be 1.} When jo=1, J=2
and £=10, 1] %[0, 1], there are 9 interpolation
scaling functions ¢ue:(x, V)01, and 16
interpolation wavelets consisting of 6 horizontal
wavelets (¥ (x, v) with £€(0, 1), /€(0, 1,
2)), 6 vertical wavelets (¥£,, with £ (0, 1, 2),
/=(0, 1)), and 4 diagonal wavelets (¥ (x, v)
with %, /=(0, 1)).

The direct approach to construct the multiscale
system equation equivalent to the single-scale
system equation in Eq. (12) requires somewhat
involved analysis. The easiest way to derive the
multiscale system equation is to transform the
single-scale equation in Eq. (12) into the multi-
scale form (see Jang et al. (2004)):

K]U]:F] (14)

through the following transforms

ﬁj:TU] (15)
Fj:TTFj (16)
K]:TTK]T <l7)

In the above, T is the transformation matrix to
convert the single-scale solution into the multi-
scale solution. The detailed process of construc-
ting T will be discussed in the next section. The
column array Uj is defined as

UJ:{SJ‘O, djy digs1, o, d;o )T (18)

{  Start

|

Preprocessing for subdomain method,

wavelet-Galerkin transform, and fixed grid analysis

|

Construction of system matrix

K and ¥
’

Adaptive analysis

!

End

Fig. 4 The overall process of multiscale adaptive
analysis

where

Sio={Sjon)’, (B 1)E{0, 1, 2, -, 270}

d;={d;, d}, &}}"
with

d}_{ Jk[} kE{ 2j_1}9 ZE{()’ 19 Y 21}

dgz{dik.l}’rv ke{ov 1’ T Zj}ﬂ Ie{o’ 17 " ZJ—I}

&={d, )% k{0, 1, -, 27=1}, I€{0, 1, -, 21}
In the above definitions, the ranges of the trans-
lation indices £ and [/ are differently given de-
pending on the directions of the wavelets. The
column array F; can be similarly defined.

In the next two sections, we will explain the im-
plementation procedure of the multiscale wave-
let-Galerkin analysis in detail. The analysis pro-
cedure may be divided into three parts: pre-
processing, construction of the system matrix, and

the adaptive analysis as shown in Fig. 4.

3. Implementation : Preprocessing

The preprocessing procedure is illustrated in
Fig. 5. Each process will be described below.
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3.1 The numbering convention of the multi-

scale wavelet nodes

In the multiscale analysis, the single-scale co-
Numbering of the multiscale wavcelet nodes

efficients {or solutions) ﬁ; are decomposed into
v multiscale coefficients U;={s;,, dj,, djp+1, "
d,;_: 5. As a numbering convention for the mul-

Construction of the transform matrix T

tiscale analysis, we number s;, first, and then dj,

* to d;-1. For example, let us consider the one-
Sparsity analysis of K, dimensional case. Fig. 6(a) illustrates the single-
‘ scale node numbering of /=3, and Fig. 6(b)

depicts the corresponding multiscale node num-
Boundary approximation for fixed grid analysis

bering. For the multiscale numbering, the nodes

‘ for the scaling functions are numbered first, and

Configuration of subdomains the nodes for the wavelets are numbered from the
- + lowest scale to the highest scale.

- For the two-dimensional node numbering, the

directions of wavelets d} are additionally consi-

Fig. 5 The preprocessing flow chart for multiscale dered. The coefficients of the horizontal wavelets
adaptive analysis d? are numbered first, those of the vertical wave-

Wavelets — S50 521 S32 535 S3a 535 535 557 Sg S0 0y, dy; s, d,,dy, d,f_st3

I /\ hoA .

(\ /\ /\\, ,K"‘/\ l‘\ / \}f
VARVARVARY. \{ Iy /\/ ;}é\ ?{\
1 i LA AV AR
A A A /x\ f\ ’(\ / // k"\’[\x\‘% TS 4R\
II’ \\ I\ I/ \\ I\ /1 \\ / \ / \ \ ’I/ A ] \\\&s /","f \ {I \\\\
AAALRARA AN AR AN

(a) (b)

Fig. 6 One-dimensional node numbering : (a) the single-scale case, and (b) the multiscale case

(a)

Fig. 7 Node numbering for a two-dimensional problem of j=2: (a) the single-scale case, and (b) the

multiscale case ( ¢ : scaling functions of sz, ® : scaling functions of $i,x,;,, #: wavelets of di;, ¢:
wavelets of ¢?x.;, and « : wavelets of @)
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lets are numbered next, and those of the diagonal
wavelets d? are numbered last, so the numbering
sequence is

3
jot+1 ( 19)

1 2 3 1 2
8j, ™ dio - djo - djo - djoH - dfo+1 - d

— e — d_ll—l s d?—l - d?—l

Fig. 7 compares the single-scale node numbering
and the multiscale node numbering for a two-
dimensional domain discretized by 5X5 fixed
grids.

3.2 The construction of the transform ma-
trix T
The role of the transform matrix T in Eq. (15)
is to relate the single-scale solution U; with the
multiscale solution Uy, which is explicitly written
as
Sjo
d;,
{s,}=[T] { dspos (20)

d,
Since T involves several scales, T may be con-
structed by iterative multiplications of the one-
level transform matrix T, relating {s;} and {s;_1,
d—i} for j=jo, ---, J so that the process to
construct T; should be explained first.

To obtain the one-level transform matrix T},
the domain with 5X35 fixed grids in Fig. 7 is
considered. For ease of explanation, we assume
that each node has only one degree of freedom.
First, twenty five single-scale grid points in Fig.
7(a) are divided into four groups depending on
their locations :

Group 1 : single-scale nodes for multiscale

‘ s (1, 3,5, 11, 13, 15, 21, 23, 25),

Group 2 : single-scale nodes for multiscale
L (2, 4,12, 14, 22, 24),

Group 3: single-scale nodes for multiscale
%, (6, 8, 10, 16, 18, 20),

Group 4 : single-scale nodes for multiscale

dii (7,9, 17, 19).

As a typical node belonging to Group 1, consider
the single-scale node 13 on which $;.,2 is defined.
As shown in Fig. 2(a), ¢:11 on the multiscale
node 5 is 1 at the multiscale node 5 and vanishes

at the multiscale nodes 1, 2, 3, 4, 6, 7, 8, 9. Also
¢2,22 corresponding to the single-scale node 13
is 1 at the single-scale node 13. Therefore, the
relation between the multiscale coefficient sy,
and the single-scale coefficient sz is simply

1 X$1,1,1= 52,22 (21)

Other single-scale coefficients of the nodes in
Group 1 are related to the multiscale coefficients
in the same way as in Eq. (21).

Next, nodes in Group 2 are considered. The
single-scale node 14 on which $p32 is defined is
examined. To determine multiscale wavelets not
vanishing at the single-scale node 14, one may
examine the plots in Fig. 2. By noting that only
®11,1, P121 and ¥iy: do not vanish at the single-
scale node 14, and taking into account the values
of ¢1,1,1, P1,21 and ¥i1,1 at node 14, one can derive
the following relation :

Al +0.5500,1F0.5812,="523,2 (22)

Similarly, one can derive the relations for nodes
belonging to Group 3 and Group 4. For instance,
the single-scale coefficient s23 (in Group 3)
defined on the single-scale node 18 is related to
the multiscale coefficients d?1;, Si11, S,z a8

A1 05511 4+0.551,1,2=$22,3 (23)

and the relation of the single-scale coefficient $2,,3
{(in Group 4) with the corresponding multiscale
coefficients is given as

dRon +0.5d%,1 +0.5d811 +0.5dk02 +0.5d 0,

24
+0.2581,0,110.2581,1,1+0.2581,02+0.2581,1,2=$2,1,3 (24)

Using the relations in Egs. (21) ~ (24) and ex-
tending them for other nodes, the one-level
transform matrix T of size 25X 25 for 5X 35 fixed
grids can be constructed. Once the one-level
transform matrix is known, the matrix T in Eq.
(15) is constructed by the successive multiplic-
ation of T; as depicted in Fig. 8.

JO]h‘LOI

Fig. 8 Construction of the total transform matrix T
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3.3 Sparsity pattern of the multiscale stiff-

ness matrix K; and its storage

The single-scale system stiffness matrix K, is a
sparse matrix ; only a few nonzero components
need to be stored in the computer memory. So,
before constructing K, sparsity analysis to find
the locations of nonzero components should be
performed. The fixed grids on a rectangular ficti-
tious domain have a simple sparsity pattern for
the single-scale stiffness matrix K,. However, the
sparsity of the multiscale system stiffness matrix
K, is somewhat complicated since the supports
of the multiscale wavelets are intricately over-
lapped to each other. Subsequently, the sparsity
analysis of K; is not a trivial matter and should
be performed by considering the overlapped sup-
ports of the multiscale basis functions. Fig. 9
illustrates an example of the sparsity pattern for
K;. Nonzero components of K; are marked black
in the figure.

In this work, we use the ELL format for the
storage of the sparse matrix K; (BLAST Forum,
1997). A sparse matrix can be stored in the ELL
format using three arrays:

¢« INDEX : a two-dimensional integer array
of the size [NROW XMAXNZ] to store the
column indices of the nonzero components of
each row of a sparse matrix.

1000 | i
2000
3000 | -

4000

6000
7000 -

8000 -

9 1000 2030 3000 4000 5000 8000 7000 8000
nz = 916272

Fig. 9 The sparsity structure of the multiscale
stiffness matrix K;

« DATA : a two-dimensional array of the size
[NROW X MAXNZ] to store the values of the
nonzero components of each row of a sparse
matrix.

¢« NNZ : a one-dimensional integer array of
the size [NROW] to store the number of the
nonzero components of each row of a sparse
matrix.

In the above, NROW denotes the number of
rows of the matrix, and MAXNZ is the maximum
value among the components of NNZ.

As an example of the ELL format, the follow-
ing matrix A is considered

(mooo—zo}
39000 3
07870 0
= 25
A% 30875 0 (25
0809 9 13
|0400 2 —1

The ELL representation of A is given as

[2] 15
3 126
3 234
AWZ—4,U%EX—I345,
4 2456
3 256 |
o - (26)
[10 —2
39 3
7 8 7
DATA= 38 7 s
8 9 9 13
4 2 —1 |

The sparsity analysis is to find column indices of
the nonzero components in each row of a sparse
matrix. In other words, the sparsity analysis is to
obtain the array NNZ and the array INDEX of
the multiscale system matrix K;.

3.4 Boundary element information

For the boundary approximation of the fixed
grid method, the approach developed in Jang
(2004) and Jang et al. (2004b) is used. Boundary
curves are approximated by piecewise oblique
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(a) (b)

Fig. 10 The boundary approximation for the fixed grid analysis: (a) three types of boundary elements, and

(b) the quadrilateral boundary element

lines connecting intersection points between the
original boundaries of the domain and the fixed
mesh. In this approach, boundary elements have
two material regions: the real material for the
original domain @ and the fictitious material for
the fictitious domain £\ w. Also, there exist three
kinds of boundary elements depending on the
shape of the area lying inside w: triangular ele-
ments, quadrilateral elements and pentagonal
elements, as illustrated in Fig. 10(a). In Fig. 10
(a), Q¢ denotes the region of an clement, and w*
denotes the region of the element lying inside w.

Next, the evaluation of the stiffness matrices of
the boundary elements is considered. Since the
multiscale stiffness matrices can be obtained
through the multiscale transforms of the single-
scale stiffness matrices as in Eq. (17), only the
single-scale element stiffness calculation is inves-
tigated. Moreover, a triangular boundary element
can be considered as a degenerated case of a
quadrilateral boundary element, and the stiffness
of a pentagonal boundary element is obtained
simply by subtracting the stiffness of 2%\ w* from
the stiffness of an element concerning £2¢. So, only
the stiffness evaluation of a quadrilateral element
is presented in this work.

The stiffness matrix of a quadrilateral element
can be written as

&=/ [ B7(& nDalé DBIE 0|I|dedy (27)

where (&, 7) are the element local coordinates, B

denotes the matrix relating strains with displace-
ments, and Dy is the matrix form of Co in Eq. (8).
In (27), the Jacobian | J| is simply one quarter of
the element area because the element shape is a
rectangular. Note that Dp is not constant over a
boundary element because the element has two
material regions.

To facilitate the stiffiess evaluation of a bound-
ary element, we introduce additional coordinates
(7, s) mapping a normalized rectangular domain
[—1, 1] x[—1, 1] to, the region bounded by I-
2-3-4 in Fig. 10(b). As in the standard bilinear
finite element, the element local coordinates (&,
7) can be expressed as

5i>
7i

5 4

< >:2Ni(7, s)(
7] =1

where (&;, ;) are the coordinates of the intersec-

tion points, e.g., points 1, 2, 3 and 4 in Fig. 10(b),

N:(7», s) and represent standard bilinear func-

(28)

tions. Using Egs. (27) and (28), one may write
the single-scale stiffness matrix of a boundary
element as

+(=) [B(& DB DlIldedn o

= [ [ B ), 10r. )
DB(&(7, s), n(», s))|IN T |drds

where |J| is the Jacobian relating (7, s) and
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(&, 7), and 7 is a small positive parameter dis-
cussed in Eq. (8).

Since a boundary element requires special inte-
gration rule in Eq. (29), an identification number
ID is allotted to each element during the pre-
processing to tell the type of an element :

ID=0 for elements lying outside w,

ID=1 for elements lying inside w,

ID=2 for triangular boundary elements,
ID=3 for quadrilateral boundary elements,
ID=4 for pentagonal boundary elements.

In case of ID=2, 3, and 4, the coordinates of
the intersection points should be also recorded to
compute | J| in Eq. (29). Therefore nine data are
stored for each element in the element table to
calculate the stiffness matrix of the element: ID,

&1, o, &3, &b 1, 72, 73, and 74

4. Implementation : Multiscale
System Matrix Construction
and Adaptive Analysis

For the wavelet-Galerkin analysis, the multi-
scale system matrix K; can be easily constructed
from the single-scale system matrix K, by using
Eq. (17). However, when the size of K; is very
large, it generally requires too much time and
very large memory. For instance, if 2 X2 plane
stress elements are used for the analysis, the total
degrees of freedom for K, will be (2°+1) X
(21%) x2=2, 101, 250. To convert this large-sized
stiffness matrix K, to its multiscale version K;
requires a transform matrix T having the same
size as K]. Therefore, a tremendous amount of
computation time and memory size cannot be
avoided unless the actual matrix size for the
transformation is reduced.

In order to overcome this difficulty, we propose
to divide the analysis domain into several sub-
domains. Then the multiscale transform of the
system matrix is performed separately in each
subdomain, and the transformed multiscale sub-
domain system matrices are finally assembled. As
the number of subdomains (will be denoted as
ND) increases, not only the size of the stiffness
matrix but also the size of the transform matrix

reduces. Therefore, the system matrix construction
of TTK, T with many subdomains (i.e., large ND)
is computationally much more efficient than the
case of no subdomain (IND=1). However, the
use of too many subdomains deteriorates the
efficiency of the wavelet-based adaptive analysis
(the adaptive strategy will be explained later.)
The effect of the number of subdomains on the
CPU time and the required memory size will be
studied numerically with benchmark problems.

In forming the multiscale system matrix Kj,
SPARSKIT (Saad, 1994) was used for the multi-
plication of matrices stored in the sparse format.
The following is the multiplication process for K;
using SPARSKIT where the CSR {Compressed
Sparse Row) format is used for the sparse matrix
operations :

@ TT — T, @ K_temp - TTKj,sub,
ND
@ Kjsuw — K_tempT, @ K, ‘_SUEIK],sub

where K;sup is the multiscale subdomain system
matrix. In the above, the fourth step is the assem-
ble process of the subdomain stiffness matrices
into the global system matrix. It is difficult or
inefficient to impose Dirichlet boundary condi-
tions on the multiscale system matrix K;. There-
fore, the boundary conditions are imposed on the
single-scale system matrix before the transfor-
mation.

The procedure to transform the single-scale
force vector F; to the multiscale force vector Fy is
similarly conducted. For completeness, we write
the implementation process :

@ TT — T, @ F],sub — TTF!,sub,
ND
@F, — Su%il Fjsun

where all matrices and vectors are stored in sparse
form, and Sparse BLAS (Carney et al, 1996) was
used for the matrix-vector multiplications.

The main advantage of using multiscale wave-
lets for numerical analysis is that simple and
effective adaptive analysis can be performed by
utilizing the difference-checking nature of wave-
lets. Since the wavelet coefficients represent the
differences between the solutions at different re-
solutions, they can be used as good error es-
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Fig. 11 The insert positions of child wavelets ac-
cording to the parent wavelet’s type: (a)
horizontal parent wavelet, (b) vertical par-

ent wavelet, and (c) diagonal parent wavelet

timators for adaptive analysis. In this work, we
employ the same adaptive scheme as in the previ-
ous works (Jang et al., 2004a ; Jang, 2004). The
two thresholding parameters 87 and 6;°% (8°>
8% >0) will be used to control the degree of the
adaptivity. The adaptive scheme is given as

¢ Exclude wavelets ¢7%,; from the basis set
if | df [ <8/,
o Preserve ¥/%. in the basis set if §/2%<]|
Al | <08 (30)
¢ Add child wavelets of ¥%,; into the basis
set if | i | > 8%,

In (30), the child wavelets of the parent wavelet
¥, are the wavelets emerging around the sup-
port center of ¥, to decrease the solution error
around ¥7%,:. Depending on the parent wavelet’s
type, the child wavelets are inserted in different
locations as illustrated in Fig. 11.

The magnitude of the thresholding parameters
should decrease as the resolution level increases.
The following reduction strategies are commonly
used. For horizontal and vertical wavelets,

SFh=08}%/2, 81 =07"/2 (31)

and for diagonal wavelets,
Sihi=01"/4, o =38i"/4 (32)

5. Numerical Study

In this section, we mainly investigate the effect
of the domain subdivision on the computational
CPU time and memory usage. The adaptive strat-
egy described in the previous section will be

p =1000

Pttty

0.5

Yy v v VY

1y
| A /IA’HL
! 0.5 !

The quarter model of a plate with a center

Fig. 12
hole under uniform uniaxial tension (»=
0.1)

employed for all calculations (we used 8¥°=
0.001 Xmax (s;,) and §2*=¢§*x0.01.)

Case study 1: rectangular panel with a cir-
cular hole

The stress concentration problem in a rectan-
gular panel having a circular center hole is con-
sidered. A quarter of the rectangular panel is
depicted in Fig. 12 with its boundary conditions
prescribed. Young’s modulus and Poisson’s ratio
of the panel are given as E=2.0X10% and v=
0.3, respectively. For the treatment of the circu-
lar boundary, we used the fictitious domain ap-
proach, and y=0.00001 was used for Eq. (8).

Fig. 13 shows the locations of the adaptively-
added wavelets at the final resolution level for
different numbers of subdomains {one may see
in Jang et al.(2004a) and Jang (2004) how the
nodal distributions vary as the resolution level
increases.) The initial resolution levels of the
adaptive analysis are assigned differently for each
configuration depending on the number of sub-
domains : jo=1 for ND=1X1, jo=2 for ND=
2X2, jo=3, for ND=4xX4, and jo=4 for ND=
8 X 8. The adaptive analysis proceeds up to the
final resolution level of J=7, i.e, 128 X128 sin-
gle-scale elements. The interpolation wavelets are
densely located near the hole due to the stress
concentration effect on the hole boundary. From
Fig. 13, one can see that the distributions of the
interpolation wavelets are different depending on
the number of subdomains. This is due to the fact
that more wavelets are used at the starting resolu-
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tion level 7, as the number of subdomains in-
creases. For example, while 9 scaling functions

Fig. 13 The locations of the adaptively-inserted in-

terpolation wavelets at the final resolution
level for various numbers of subdomains:
(a) ND=1x1, (b) ND=2x2, {¢) ND=
4x4, (d) ND=8x%8 (left figures : wavelets
for horizontal displacement, right figures:
wavelets for vertical displacement)

and 16 wavelets of the resolution jy=1 are
initially used in case of ND=1X1, 36 scaling
functions and 64 wavelets of the resolution jo=2
are placed as the basis functions in case of ND=
2X2.

To make sure the accuracy of the proposed
approach, the solution obtained by using ND=
8 X8 is compared with the converged ANSYS
result obtained with 12,053 PLANE42 elements.
Fig. 14 shows the vertical stress ¢y along the edge
AB of the plate. As shown in the figure, the two
methods give almost identical results.

Consumed CPU time and memory size accord-
ing to the number of subdomains are listed in
Table 1. These numerical results indicate that as
the number of subdomains increases, the numeri-
cal cost for the analysis rapidly decreases. Never-
theless, using subdomains more than 8 X8 (in this
case) is not so meaningful since the room for
adaptivity becomes smaller (when ND=8 X8 and
J=7, maximum number of wavelets in each
subdomain is only 17 X17.)

Now the solution convergence is checked dur-
ing the adaptive analysis. The L? error norms for

Table 1 Time cost and required computer memory
size for Case study 1

ND 1X1 2X2 4X4 8 X8
Time cost (sec) | 11.296 | 4.203 | 2.421 | 1.593
Memory (MB) 191.1 | 71.0 38.9 28.5
3500
‘ * Multiscale method
= V ANSYS
2500+ 1
» %
n g
@ 2000 ’V
=
0 %
RELOS ‘&\E%%
;{NM‘WM‘“
o . \»&Wﬂ#\mwxwkmﬂm
Wm’“’f“wnw
o1 0.38 232 Q. l25 3 G35 04 ) 55 0.5
Along the bottom line
Fig. 14 Stress plot along the bottom edge AB of the

plate in Fig. 12 (ND=8X8)
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W @ ND = 1x1
ND = 2x2
A ND=4x4
@ ND=8x8

L? error nom

Degree of freedom

Fig. 15 The L? error norm for various numbers of
subdomains

the different number of subdomains are plotted in
Fig. 15. The L? error norm employed here is
defined as

Lo & (05— O Re (05T
S (0RO

X100(%) (33)

where gf is the element solution in single-scale
form, fLe is the reference solution obtained by
using the non-adaptive analysis (or full analysis)
at the highest resolution, and NE is the number
of total elements. As can be seen in Fig. 15, when
the number of used degrees of freedom is small,
more accurate solutions are obtained for the case
of using less number of subdomains. However, the
situation is reversed when the number of used
degrees of freedom is large. The behavior of the
error norms in Fig. 15 is related to the ortho-
gonality of wavelets. The interpolation wavelets
in this work are not orthogonal unlike the popu-
lar Daubechies wavelets, so the interaction be-
tween long-scale and short-scale wavelets can
affect the effectiveness of adaptivity. When the
number of subdomains becomes larger, the num-
ber of interacting wavelets decreases, and more
wavelets can be concentrated near the stress con-
centration region.

Case study 2: hanger bracket

As the next example, we consider a hanger
bracket problem in Fig. 16. The locations of
the adaptively-inserted wavelets are depicted in

g |
‘ 30 l

Fig. 16 Hanger bracket with a point load (=S5,
E=2.0X%10% and v=0.3)

Yt

manen

k2 Wy 350

o5 8348
Wit
160 T e 250 0 350
s w 3950

Fig. 17 The locations of the adaptively-added inter-
polation wavelets (ND=3X1) (left figure:
wavelets for horizontal displacement, right
figure : wavelets for vertical displacement)

Fig. 17. Just as in the first example, the grid
distribution is dense where the stress concentra-
tion is expected. Table 2 lists the computational
time and the memory usage according to different
subdomain configuration. In Fig. 18, the stress
component g, along the line AB of the bracket
calculated by using the proposed wavelet-Galer-
kin method is compared with the converged result
of ANSYS (with 43,380 PLANE42 elements).

Table 2 Time cost and required computer memory
size for Case study 2

ND 3IX1 6X2 12X4
Time cost {sec) 16.687 7.843 4.750
Memory (MB) 274.7 137.8 96.6




Implementation Strategy for the Numerical Efficiency Improvement of the Multiscale Interpolation ---

- * Multiscale method

oo, V ANSYS

Pedda g i

¢ OQ 5 Q 1% 0 25

Along the bottom line

Fig. 18 Stress plot along the line AB of the hanger
bracket in Fig. 16 (ND=12X4)
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Fig. 19 The L? error norm for various numbers of

subdomains

The L? error norms for different subdomain con-
figuration are also illustrated in Fig. 19. The
observations made in the first example are equally
applied to this problem, so no further remark on
the solution behavior will be given.

5. Conclusions

The implementation of the adaptive multiscale
wavelet-Galerkin method using the subdomain
technique was presented. The special attention
was paid to give the detailed implementation
procedure of the multiscale wavelet method. The
effect of the proposed subdomain technique on
the computation time, the required memory size,
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and the solution convergence was numerically
investigated. When the wavelet method was im-
piemented in the adaptive setting for large-sized
numerical problems, the use of many subdomains
increased the solution accuracy as well as it
reduced the required CPU time and the memory
size for the analysis. Since the proposed sub-
domain method is suitable for parallel processing,
the parallelization of the subdomain-based wave-
let-Galerkin method may be a good alternative to
the one proposed here.
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