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Stratified Steady and Unsteady Two-Phase
Flows Between Two Parallel Plates

Woo-Gun Sim*
Hannam University,
133 Ojungdong Daedukgu, Taejon 306-791, Korea

To understand fluid dynamic forces acting on a structure subjected to two-phase flow, it is

essential to get detailed information about the characteristics of two-phase flow. Stratified
steady and unsteady two-phase flows between two parallel plates have been studied to
investigate the general characteristics of the flow related to flow-induced vibration. Based on the

spectral collocation method, a numerical approach has been developed for the unsteady two-

phase flow. The method is validated by comparing numerical result to analytical one given for
a simple harmonic two-phase flow. The flow parameters for the steady two-phase flow, such as
void fraction and two-phase frictional multiplier, are evaluated. The dynamic characteristics of
the unsteady two-phase flow, including the void fraction effect on the complex unsteady

pressure, are illustrated.
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Unsteady Two-phase Flow

1. Introduction

Two-phase vapor-liquid flow exists in many
shell and tube heat exchanger such as steam
generators in Nuclear Steam Supply System. The
elements of the heat exchanger can be subjected to
excessive flow-induced vibrations, at a certain
operating conditions, which can lead to fretting
wear damage. Although fluid damping, fluidelas-
tic stiffness and hydrodynamic mass in two-phase
flow (Carlucci and Brown, 1983 ; Pettigrew et
al,, 2003) and in single-phase flow (Pettigrew
and Taylor, 1991 ; Price, 1995) are reasonably
well understood, little is known about the physi-
cal behavior of two-phase flow related to flow-
induced vibration. Some knowledge of dynamic
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characteristics of two-phase flow is essential to
formulate the problem related flow-induced vi-
bration (Paidoussis et al., 1990). For reliable
predictions of dynamics response of the elements,
it is required to develop computer model for fluid
damping and hydrodynamic mass. However, few
numerical results (Hara and Kohgo, 1986) on
hydrodynamic forces exist.

The homogeneous flow model and the separat-
ed flow model are the two most widely used and
tested treatments of two-phase flow at present
available. Schrage et al.(1988) took void fraction
measurements in an in-line bundle with air-water
cross—flow using quick-closing plate valves. They
found that void fraction varies with mass flux and
it is greatly over-predicted by the homogeneous
equilibrium model. This model neglects the effect
of the slip ratio based on the homogeneous mo-
del. For sufficient information about the charac-
teristics of two-phase flow in horizontal tube
bundles, an improved void fraction model has
been developed by Feenstra et al.(2000). In a
recent study, Pettigrew and Knowles (1997)
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showed the effect of surface tension, using a
chemical surfactant, on two-phase damping and
on average bubbly size. However, in order to
focus future studies on the flow-induced vibra-
tion, it is required to investigate the mechanism of
the two-phase flow in detail, especially related to
the damping and the added mass.

Recently, the spectral method (Mateescu et al.,
1994) has been applied to the unsteady potential
flow and then to the unsteady viscous flow in an
eccentric annulus. The added mass and viscous
damping were estimated, when a cylinder under-
goes oscillatory motion in the plane of symmetry
and normal to the plane of the symmetry. The
viscous effects on the added mass and damping
were evaluated, comparing the results obtained by
potential flow theory with those obtained by the
viscous flow theory. It was shown the viscous
damping effect becomes important with decreas-
ing annular space. To validate the spectral meth-
od, the results for potential flow were compared
with the available analytical solutions of Chung
and Chen (1977) for eccentric configurations
and Fritz (1972) for concentric configurations. A
study of free vibration of rectangular Mindlin
plates was presented by Lee (2003), based on the
Chebyshev pseudospectral method. The method
uses test functions that satisfy the boundary
conditions as basis functions. The result shows
that rapid convergence and accuracy as well as
the conceptual simplicity are achieved when the
pseudospectral method is applied to the solution
of eigenvalue problems. A FAMD (Fluid Added
Mass and Damping) code was developed by
Koo (2003) for practical applications calcula-
ting the fluid added mass and damping. In the
formulations, a fluid domain is discretized with
CO-type quadratic quadrilateral elements con-
taining eight nodes using a mixed interpolation
method.

Utilizing the spectral method (Mateescu et al.,
1994), the stratified steady and unsteady two-
phase flows between two parallel plates are eval-
uated. The effect of void fraction on the pressure,
related to viscous damping and added mass, is
illustrated for future study related to the flow-
induced vibration.

2. Problem Formulations

2.1 Analytical solution of the two-phase
flow

2.1.1 Steady flow

The two-phase steady flow is generated by the
pressure drop along the axial direction as shown
in Fig. 1{(a). The plate is assumed to be infinitely
long and the gap between the plates is H. Thus,
for the parallel flow, we have u=u(y), v=
w=03/0x=0. As a result, the simplified Navier-
Stokes equation for the steady flow is obtained,

Pur_ 1 dpr

PR v Ky (1)

where the subscript f stands for both flows, gas
and liquid, and K denotes 1/u(dp/dx). The
solutions of steady flows (gas and liquid) are
expressed as ;

uf=_% K+ Chy+Cr (2)

In the above equation, the four unknown co-
efficients Cp, Cy are determined by considering
two fixed boundary conditions, Vf=0, and two
interface conditions (#z=1u; and Tyxg= Tyxs) ;
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Fig. 1 Schematic diagram for (a) Steady two-phase
flow and (b) Unsteady two-phase flow
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wm1=0 at y=0, u,=0at y=H

(3)
M=Uz, 4 aa?)lz,uz %Z;Z at y=FH,

where p represents viscosity of fluid. Thus, the
solutions of the both flows can be expressed as ;

=Ll

o=~ KH? [(%)2— +A ﬁH‘i (l—y/H)}

where the constant, A, is

A:H-i-]{l(ﬁllz//ll—l) [%-I_(%)Z-l:]

The mass flux of liquid or gas can be obtained by
integrating the velocity across its height ;

=1 okt =3 AR
| (5)
== 0B HA [ 2430+ 3AHRE (12— h+1/2) — 1]

where the ratio of liquid height to total gap can
be expressed as the void fraction, h=H;/H=a.
In order to investigate two-phase flow, it is
convenient to define void fraction (@), superficial
velocity (7), real flow velocity (#), flow mass
quality (x) and two-phase frictional multiplier
(@), as follows ; '

a=As/A, jg:Qg/A, jl:Ql/A,
Ug=— Qg/Ag, ur= Ql/Al (6)

wnel e ), () o= (2 ) o

In the above equation, the subscripts, / and g,
stand for liquid and gas, respectively. The two-
phase frictional pressure gradient is expressed in
terms of the single-phase pressure gradient for the
total flow considered as liquid.

2.1.2 Unsteady flow by simple harmonic
motion
The unsteady two-phase flow is given by sim-
ple harmonic motion, u= Use™" of upper plate,
while the lower plate is fixed, as shown in Fig.
1{b). Based on small amplitude motion, the mo-

mentum equation can be simplified as ;

. . _ o4
4lResfuf:Tzf (7)
where i=v—1, @,=us/Use™, $=y/H and
Res,=p;0H?/41. The analytical solution for
#ts may be written in the form

Z'iszfleafy +Aﬂe‘“fy (8)

where the complex constant @y is expressed as
a;=(1+17)vRess/2. The a priori unknown con-
stants, Ay and A are determined by considering
two boundary conditions and two interface con-
ditions between two fluids ;

=1 at =1, 7»=0 at =0
0t Res1 02 0tz A A (9)
e R S = gt =

Resz 01 ay ay=yz

Considering the boundary and interface condi-
tions, we can get the system equation in matrix
form ;

Mll MIZ 0 0 All
Moy Moz Moz Moy | | Arz
My Msz Mss Mss| | Az

0 0 MsMu|lAx

(10)

S O O -

where
Miu=e", Mu=e™%, My=e"?2,
Mp=e""2 Myu=—e"%2, Myy=—e %2,
Mu=ae™?:, Myp=—me "2,

Rcsl Resl _
Mas=— me®, My= “ds
33 Rees 2 > Vi34 Res e
M43= 1, M44= 1

from which the constants are obtained.
2.2 Numerical approach for two-phase flow

2.2.1 Spectral collocation method

A numerical approach for the stratified two-
phase flow has been developed based on the
spectral collocation method. By assuming a small
amplitude motion of the moving body for un-
steady flow, linear governing equations are ob-
tained. As a result, the governing equation of the
flows, represented by the Navier-Stokes and con-
tinuity equations, may be expressed in matrix
form as
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p(0 8 % & 5 5
ot I oy oy b ot O F

) 0 (11)

where ¢ and x, y are independent variables re-
presenting the time (for unsteady flow) and geo-
metrical coordinates, respectively. Usually, the
variables and parameters appearing in Eq. (11)
are conveniently expressed in dimensionless form,
instead of the actual physical parameters, e.g.;
f=mx/2L and $=2y/H—1. The above equa-
tions are subjected to specific boundary condi-
tions, moving and fixed boundary conditions.
Based on no slip condition between fluid and
plates, the boundary conditions can be written as

VfZVB (12)

where subscripts f and B stand for fluid and
body, respectively. To solve the present stratified
flows, it is required to consider interface condi-
tions where flow parameters (pressure and veloc-
ity vectors) and axial skin friction of both gas and
liquid flows are the same ;

Ju ou
be=ps, Vg Vla He ag )23/ ayl (13)
where subscripts, g and /, represent gas and

liquid, respectively.

The present spectral method (Sim and Kim,
1996) is based on suitable spatial expansion for
the dimensionless fluid dynamic parameters of
the unsteady flow. The flow parameters can be
expressed in terms of Chebyshev polynomials, 77,
and Fourier functions, F, such as sin{ax/2L)
or cos(mx/2L);

0,0, =R Us O F(O) e (14)
where @ denotes the oscillatory frequency and
Uy; are a priori unknown complex coefficients.
The spatial expansion is usually performed in the
computational domain, obtained by a convenient
transformation from the physical domain.

To get the system equation with this spectral
expansion, the governing equations are imposed
at specified collocation points within computa-
tional domain. Using the collocation approach,
algebraic systems of equations can be obtained
from Eqs. (11) ~ (14);

[A{Us}={b} (15)

where b is related to moving boundary condi-
tions. This system of equations in complex form is
solved for the unknown complex coefficients of
the spectral expansions of the fluid parameters.

2.2.2 Unsteady two-phase flow

As shown in Fig. 2(b), the present numerical
approach is applied to two-dimensional two-
phase flow generated by more complicated mov-
ing boundary conditions; uz= Upsin(mx/2L)
e™ and vp="V, cos(mx/2L) ™"
terms between the unsteady components are neg-

. The product

lected by the assumption of small amplitude mo-
tion of the plate. (e.g.; u+dv/8x<1). Thus, for
the unsteady viscous incompressible flow, con-
tinuity equation and Navier-Stokes equations can
be expressed in linear form ;

ou , ov —0
ox | dy
Ju__ 1 0p FPu | Fu
ot~ o 6’x+v<8x2+82> (16)
dv_ 1 0p Fv  Fv
o ooy tY <8x2+8y>

subjected to boundary and interface conditions ;
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Fig. 2 Velocity profile of steady flow for H\/H=
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dx) =1 with (a) dpw/dx=dpsp/dx and (b)
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v=0, =0 at y=0
wi=U, sin(mx/2L) e®* at y=H
vi=V, cos(mx/2L) e™* at y=H (17)
V1=, h=Uz, 1=12 at y=H,

au1_ Otz —
1 By =2 3y at y=H,

In order to generalize the present problem, it is
convenient to define the following dimensionless
parameters ;

p=—21Y H=—2H = p
Voo™’ U,e™?’ 1owH V™!
_osoH* 5 x . 2y
Resf 4ﬂf L] 6 2L 7T, y H 1 (18>
s 2L . _H,
I= mH> h= H

where Ress denotes the oscillatory Reynolds
number of fluid /. The flow-dynamic properties
are expressed in expansion forms. Considering the

geometry, the flow parameters are expressed as
5(6, 9) =3 31 VaT;(9) ¢ (k6)
200, =3B U, skO)  (19)
1(6. 9) = 23 PaTs () ¢ (k0)

where ¢ (k) =cos(k0), s(k0)=sin(k@). The
choice of Fourier series as an interpolation funec-
tion in the axial direction stems from of the perio-
dic character of the flow.

Considering the expansion forms, the gover-
ning equations can be expanded as

(UskT;(9) c (k) +20 Vi T} (9) c(k6)) =0

M=

>
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subjected to boundary conditions ;

33 VT () (k) =1

S VLT (— 1) e (k) =0

S UnTy(—1) s (k6) =0

The formulae for the derivatives of Chebyshev
polynomials are

L(f(z))=§men(z); (21)
f(2); ba— o p;ﬂ}ﬂm;., n+p=odd
f7(2); bp= 1 2 p(tP—u®) ap, nt+p=cven

Cn p=n+2

Using the collocation approach mentioned in
section 2.2.1, algebraic systems of equations can
be obtained from Egs. (20) and (21); [Al{ V}=
{B}, where the column vector V stands for a
prior unknown coefficients and the column vector
B is related to the boundary conditions. In the
determination of the unknown coefficients of the
spectral expansion, it is necessary to assign more
collocation points in the computational domains.
The present numerical solution is obtained with
n=m=6 collocation points which are uniformly
distributed axially and vertically.

3. Typical Results and Discussions

3.1 Steady two-phase flow

For the purpose of understanding two-phase
flow mechanisms and for the future purpose of
estimation of steady viscous forces, the analysis
for steady two-phase flow has been performed.
The velocity profile is shown in Fig. 2 for H,/
H=04, w/1tg=80, 0/0¢=1500 and —1/m
(dp/dx) =1. The result in Fig. 2(a) is calculated
for dpw/dx=dpsp/dx while in (b) for #e+
;= mis. The dotted line is given for single-phase
liquid. It is found that (1) the velocity in gas flow
is higher than that in liquid flow, (2) the mass
flow rate of two-phase flow for a given pressure
drop per unit length, is lower than that of single
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Fig. 3 Fluid parameters for two-phase flow versus

quality ; {a) Void fraction, (b) Volumetric
flux, (c) Two-phase frictional multiplier and
(d) Real flow velocity

phase liquid flow ; 7zizg+#2,<7ts and (3) the
pressure drop of the two-phase flow is higher
than that of single phase flow for a given mass
flow rate. The ratio of these pressure drops is
defined by two-phase frictional multiplier, ¢*=
(dpiw/dx)/ (dpsp/dx) which is shown in Fig. 3
(c). The other important fluid parameters of
two-phase flow, (a) void fraction (@=Ag/A),
(b) superficial velocity (jo=Qg/A, jiI=Q./A)
and (d) real flow velocity (ue=Qg/Ag, ui=Q:/
A,) versus flow quality (x =1/ (g +2,)), are
presented in Fig. 3. It is shown that the volume-
tric flux and real flow velocity of gas phase are
higher than those of liquid phase. )

3.2 Unsteady two-phase flow

To validate the present numerical approach for
two-phase flow, the problem is formulated for
simple harmonic two-phase flow (one dimen-
sional unsteady flow), generated by harmonic
oscillatory motion of the moving plate at y=H in
the tangential direction to the plate ; = U,e™".
The dimensionless amplitude of unsteady veloci-
ty, | 2|=| u/ (Use™*)|, and phase angle, ¢=tan™*
{Im(#)/Re(dr)}, are given in Fig. 4 by the
numerical approach for, Resi=ovwH?/44=2.5,
Ress=0:0H?/412=12.5, /=001, [=2L/
gH=0c and o=H,/H=0.3. The numerical

T3 B 3% 64 9% 58 & 83 RTTY To 37 3¢ of

a1 € 8 ai ot

v/ H v/ H
(a) (b)

Fig. 4 Comparison of typical numerical results (%),

to Semi-analytical Results (—) for simple
harmonic two-phase flow (Res=2.5, Res;=
12.5, 03/ 01=0.01, [=c0 and @=0.3): (a)
Amplitude and (b) Phase angle of dimen-
sionless unsteady flow (O ; Single phase lig-
uid flow)

results are compared to the semi-analytical results
given by Eq. (10). Good agreement is found be-
tween the numerical results and the analytical one
given for the two-phase flow. As compared to the
results for single-phase liquid flow (o), liquid
flow (y/H >0.3) is less restricted by the fixed
plate (y/H=0). So, the amplitude of velocity of
two-phase flow is higher than that of single-
phase flow.

The present numerical results for two-dimen-
sional two-phase flow (Resi=1, Rese=1, o1=
0.01, =4 and a=0.2) are illustrated in Fig. 5.
To see the two-phase effect on the flow para-
meters, the result of single-phase liquid is denoted
by a dotted line in Fig. 5. Similarly to the result
of steady flow shown in Fig. 2, the axial compo-
nent, #, of gas phase flow is higher than that of
the liquid phase ; however, vertical components,
D, is less than 1 in amplitude. It is found that the
amplitude of unsteady pressure for two-phase
flow is less than those of single-phase flow and
there is no pressure variation in the vertical di-
rection. At a certain time (e®*=1), the velocity
vectors and pressure of unsteady flow are shown
in Fig. 6 for the same flow parameters given for
Fig. 5 except @=0.3. It is clear that the first order
term of Fourier series defined in Eq. (19) is
dominant and the vertical variation of the dimen-
sionless axial velocity is similar to the results
given for the steady flow (see Fig. 2). The void
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phase flow for Reg=1, Regp=1, pz/pl=
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Imaginary components of dimensionless un-
steady flow parameter (——-; Single phase
liquid flow)
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Fig. 6 Velocity vectors and pressure of unsteady
flow in a certain time (e™ 1) (Res=I,
Resx=1, 02/ 01=0.01, {=4 and ¢=0.3)

fraction effect on the complex pressure for Res;=
1, Resy=1, /=4 and ps/ p1=0.01 (0) or 100 (X),
is illustrated in Fig. 7. Since, the complex pressure
is defined with respect to acceleration, the real
part and imaginary parts of the pressure com-
ponent are related to added mass and viscous
damping, respectively. Thus, it is expected that
added mass and viscous damping decrease with
void fraction. It is found the dimensionless pres-
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Fig. 7 Dimensionless amplitude of unsteady pres-
sure versus void fraction; (a) Real and (b)
Imaginary components (Res;=1, Recz=1 and

~

j=4)

sure is less affected by the oscillatory Reynolds
numbers, Res; and Rego.

5. Conclusions

A numerical approach based on the spectral
collocation method has been developed for stra-
tified two-phase unsteady flow between two par-
allel plates. It is essential to investigate the dy-
namic characteristics of the two-phase flow, for
the future studies related to the flow-induced
vibration. Analytical solutions for a steady two-
phase flow and simple harmonic two-phase flow
are provided to verify the present numerical
method. The numerical method is based on sui-
table spatial expansions of fluid~dynamic para-
meters, using Chebyshev polynomials and Fouier
functions. The unknown complex coefficients
contained in these expansions are determined by
applying the collocation method to the governing
equations, boundary conditions and interface
conditions. This method is validated by com-
paring numerical results to analytical result for
simple harmonic two-phase flow. General dy-
namic characteristics of two-phase flow are
shown from the results of the steady two-phase
flow ; e.g., two-phase frictional multiplier is hig-
her than 1 and real flow velocity of gas flow is
higher than that of liquid flow. It is found that
the dimensionless pressure decreases with void
fraction for the stratified unsteady two-phase
flow. The effect of the oscillatory Reynolds num-
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ber on the dimensionless pressure is minor as
compared to the effect of the void fraction.
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