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Application of Collaborative Optimization Using Genetic
Algorithm and Response Surface Method to an
Aircraft Wing Design
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Collaborative optimization (C(O) is a multi-level decomposed methodology for a large-scale
multidisciplinary design optimization (MDQO). CO is known to have computational and or-
ganizational advantages. Its decomposed architecture removes a necessity of direct communi-

cation among disciplines, guaranteeing their autonomy. However, CO has several problems at

convergence characteristics and computation time. In this study, such features are discussed and

some suggestions are made to improve the performance of C(O. Only for the system level
optimization, genetic algorithm is used and gradient-based method is used for subspace
optimizers. Moreover, response surface models are replaced as analyses in subspaces. In this

manner, CO is applied to aero-structural design problems of the aircraft wing and its results are
compared with the multidisciplinary feasible (MDF) method and the original C(O. Through
these results, it is verified that the suggested approach improves convergence characteristics and

offers a proper solution.
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Nomenclature

Roman Symbols

c . Subspace constraints

F . System objective function
g . Subspace objective function
L . Lift

L/D : Lift to drag ratio

M ! Number of subspace

N . Number of design variable
SFC ! Specific fuel consumption

A"  Cruise velocity

X . Subspace design variables

X . Domain-specific design variables
y . Subspace responses
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z . Design variables of the system level

Subscript Symbols

Cp . Drag coefficient

Cr. ! Lift coefficient

dyp . Displacement at wing tip

m; . Number of constraints in analysis-block j
n; . Number of design variables in analysis-
block j

W; [ Aircraft weight after finishing its mission
Wiuel .- Fuel weight

W; [ Initial aircraft weight

Wying. Semi-wing weight

Superscript Symbols

¢* ! Interdisciplinary compatibility constraints
# I Number of interdisciplinary inputs
#” . Number of interdisciplinary outputs

1. Introduction

Recently, the multidisciplinary design optimi-
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zation (MDO) has been received great attention
as a method of the system optimization and the
integration in many areas of industry as well as
aerospace field. At the early stage of MDO devel-
opment, there were many problems in MDO itself
because of its computational and organizational
difficulties. Even though MDQO has gained large
potentials as computer technology and many
methodologies for MDO have been developed
and researched, it is difficult to apply them to
practical design problems composed of several
disciplines or many design variables such as
large-scale aircraft design.

The reason of this fact is a large amount of
data communication required by disciplines dur-
ing the optimization process. If high fidelity
analyses like Euler equations or finite element
method (FEM) are used to guarantee accuracy,
the cost of analyses and data communication is
increased. And then, the computational cost for
the optimization design would be very expensive.
Furthermore, MDQO methods with multidiscip-
linary analysis (MDA) reduce the degree of free-
dom that each disciplinary expert has in the
design process. It deteriorates the performance of
outcomes designed.

To lessen such problems, this research deals
with one of multi-level optimization : collabora-
tive optimization (CQ), which is a tool for a
large-scale MDQO. As each discipline improves
performances independently without much data
communication with other disciplines, this opti-
mization tool has strong points at both of com-
putational and organizational aspects. However,
some problems regarding convergence and com-
putation time have been reported (Alexandrov et
al., 2000 ; Braun, 1996 ; Braun et al., 1996a ; Kroo
and Manning, 2000).

First of all, the multi-level structure of CO.

disturbs the optimizer of the system level in find-
ing a feasible solution. Because non-linear con-
straints of the system level work tightly during the
optimization process, it is often difficult to obtain
a feasible solution along an initial condition.
Therefore, researches have progressed about the
use of genetic algorithm that is not dependent on
an initial condition (Ghim et al., 2002 ; Ghim,

2003).

Secondly, since the optimization is performed
in the system level and the subspace level, the
number of design variables and constraints is
more than the conventional MDQO. They interfere
with not only finding a proper solution, but also
converging efficiently. If the optimization is per-
formed with high fidelity analyses, this disadvan-
tage grows heavier. So, it has been researched that
response surface models are replaced as subspaces
including optimization and analyses (Sobieski et
al., 2000 ; Jeon, 2001 ; Jun et al., 2003 ; 2004 ; Jeon
et al., 2004 ; Jang et al., 2005).

Accordingly, this study will be tough upon the
characteristics, the architecture and defects of CO
and then discuss the reason to use genetic algo-
rithm only for the optimizer of the system level
and to replace response surface models as an-
alyses in subspaces. The suggested CO like this
will be applied to MDQ problems of aircraft wing
and its results will be compared with the conven-
tional MDO method. Through examples, we will
investigate that the suggested approach enhances
convergence characteristics with offering a proper
solution and that it is possible to apply it to the
real problem.

2. Collaborative Optimization

2.1 Characteristics and architecture

CO is designed to tackle the large-scale, dis-
tributed-analysis applications often found in in-
dustry. It is a two-level hierarchical scheme, made
up of upper system level and lower subspace
(Kodiyalam, 1998).

Since CO is owing to its bi-level and distri-
buted structure, it has computational and organ-
izational advantages. These can be maximized
when CO is applied to a large-scale design opti-
mization consisting of a great number of design
variables and disciplines. However, several prob-
Iems like inefficient convergence result from the
interdisciplinary compatibility constraints and the
bi-level structure of CO.

On the other hand, CO is formulated to remove
direct communication among disciplines so as to
guarantee disciplinary autonomy. Dissatisfaction
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among each discipline is minimized by an intro-
duction of system target values that have to be
matched through the subspace optimizations.
Therefore, CO cannot only solve an optimization
problem without requiring direct communication
among disciplines, but also provide autonomy to
them (Braun, 1996 ; Braun et al, 1996b). Com-
putationally, the decrease of direct communica-
tion among disciplines makes possible the re-
duction of the computational cost, especially in
large-scale problems that deal with large amount
of data. Design freedom can be also achieved
in each discipline, as each subspace makes the
domain-specific decisions through the subspace
optimization. In addition, the analysis of each
discipline can be directly integrated with a spec-
ific optimization algorithm without much modi-
fication. Organizationally, the architecture of CO
provides a natural fit to the current disciplinary
expertise structure found in most design organ-
izations and used by most project teams. It also
provides a coarse-grained modularity such that
individual groups may alter a piece of the sys-
tem without necessarily invalidating domain-
specific decisions that other groups have already
made.

As sketched in Fig. 1, CO is posed in a two-
level hierarchic structure. The top level is a system
optimizer that finds the multidisciplinary vari-
ables (the system level targets, z) to satisfy the
interdisciplinary compatibility constraints (g*)
while the system objective (F) is minimized. The
system level optimization is represented as fol-
lows.
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Fig. 1 Collaborative optimization architecture

min F(2)
st. gi(z)=0 j=1,M (1)
Zmin; <z< Amax;

The system level constraint {g*) is obtained from
the optimal solution of a set of M subspace prob-
lems. This interdisciplinary compatibility con-
straint is designed to drive the discrepancy among
the disciplinary inputs and outputs to zero.

In the meantime, each subspace optimizer mini-
mizes the subspace objective function (g) that is
the interdisciplinary compatibility constraint in
the system level during satisfying the subspace
constraints (¢). The system level targets (2) may
be split into M non-mutually disjoint segments
of length (/;). These elements may then be par-
titioned into the interdisciplinary inputs of an-
alysis-block j (%) and interdisciplinary outputs
computed in analysis-block j (%7). Each sub-
space optimization problem may be expressed as,

7 n;
min g; (%, x) :Z:l (xij_Zi)2+i=1+h (yiy—2:)*
st. c:{%, x)>0 =1, my (2)

k=1, K}

KXmin, < Xp < Xmax,
Xmin, SX 1< Kmax,

where,

£ . Subspace objective function

z . Fixed parameter vector specified by system
level optimization, length %;

x | Interdisciplinary subset of subspace design
variable vector, length /]

% . Disciplinary subset of subspace design vari-
able vector, length #;— %

¢ . Subspace nonlinear constraint vector, length
m;

y [ Subspace interdisciplinary output vector, y
(%, x), length hJ

Only a subset of the subspace design variables
is represented in the subspace objective function.
As a result, analyses with less interdisciplinary
coupling have increased freedom in satisfying
the analysis-block constraints. Additionally, the
system level targets appear as parameters in the
subspace optimization problem. Hence, as in the
original problem statement, the analysis-block
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constraints are explicitly dependent on the sub-
space design variables, (¥, x), only.

The collaborative solution process begins with
an initial set of the system level design variables
(20). Here, the subscript refers to the zeroth sys-
tem level iteration. These variables are sent to the
subspace optimization problems and treated as a
set of fixed parameters referred to as the system
level targets. The subspace optimization problem
is then solved in which the corresponding sub-
space interdisciplinary design variables (x;) and
interdisciplinary outputs (ys) move as close as
possible to their respective targets (z) while
satisfying the sub-problem constraints (¢). Opti-
mum values of the subspace objective functions
(@) return to the system level where a new set of
system level design variables (z;) is selected. This
process is repeated until z reaches the optimum
(Braun, 1996).

2.2 Defects

CO often leads to inefficient convergence, es-
pecially when gradient-based method is used for
the system level optimization. This problem of
CO occurs mainly due to an initial condition and
the interdisciplinary compatibility constraints at
the system level. Specially, these constraints take
quadratic forms and make changes in the system
targets near the solution have little effect on the
constraint values (Kroo and Manning, 2000).

The system level compatibility constraints are
equality ones and this fact also leads to poor
convergence, especially for SQP method. SQP
method uses a linear approximation of the con-
straint, and a maximum step size is chosen as
the line search, which will not exceed the bound
of the linearized constraint. The step can be
too short to meet the true quadratic constraint
(Sobieski et al., 2000). Therefore, these equality
constraints are generally changed into inequality
constraints of g*<0.0001, and they are used in
this research.

CO requires large amount of computation time
because extra design variables are required for
the interdisciplinary inputs and outputs as well
as the target values when CO is formulated. CO
also requires many times of system iteration to get

the optimum. If a great deal of function calls are
required at the subspace level, the total com-
putation cost can be very large.

In addition to these defects, CO results can
sometimes be inaccurate. Because the system level
objective is treated like the other interdisciplinary
variables, it looses some of its influence in the
optimization process. Although this loss of in-
fluence may be mitigated with a scaling procedure
that forces more stringent compatibility of the
objective, finding a proper scaling factor will not
be an easy job.

3. Complements to CO Performance

Generally, when it is optimized in one sub-
space, it is required for the function call (O(N))
to decide the step-size and the sensitivity of per-
formances with respect to design variables. Since
CO has at least two or over subspaces, as many
as the number of subspaces (M), the function
call exponentially increase (O (N™)). Therefore,
if analyses are performed as many as the function
call, the analyses cost increases as the order of
O(N").

On the other hand, the approximated model
such as response surface models can reduces this
cost because analyses are replaced with the for-
mulation of simple functions. Since response sur-
face models often represent as a quadratic poly-
nomial function, their coefficients are decided
by the numerical experiments at the minimum
(N+1)(N+2)/2. If the design of experiment
theory like central-composite design and D-~opti-
mal experimental design is used, then the cost of
analysis becomes the order of O (N?).

Though the order of the function call is same
for above two cases, the order of the analysis cost
is that using response surface model is smaller
than not using. Hence, if analyses in subspaces
are substituted with response surface models, it
is possible to drop the computational cost from
O(N™) to O(N?. Also, it can be expected the
effect that an optimum is found quickly by eli-
minating noise during the optimization process.

To make the design problem more robust,
genetic algorithm (GA) is used in place of gra-
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dient-based method. As GA‘ does not depend on
a gradient information and an initial condition,
problems of CO caused by gradient-dependency
may be solved. But this will increase computation
time, as many design points have to be selected
for GA operation. Moreover, a great number of
function calls in the subspace level and system
iteration will drastically increase the computation
time. These facts require GA to be used in a
limited way. First, in the system level, it is good
to use GA since the objective function and con-
straints are non-linear. In the subspace level,
however, the use of GA is meaningless because
analyses are replaced with response surface mo-
dels that are convex or concave. Consequently,
GA is assigned only for the system level opti-
mizer whereas SQP is still used at the subspace
level.

To speed up the optimization at the system
level, the optimization problem is reformulated by
drawing on penalty functions instead of the con-
strained optimization problem, and the penalty
factor changes from small value to large one. Also
warm-start, suggested by Braun (1996), is used
to reach the optimum more easily and quickly.
At the last of each iteration level, optimum points
are used for starting points of the subspace opti-
mization. It makes the problem converge more
quickly.

4. Transport Wing Design

4.1 Definition

The wing of aircraft is one of the most impor-
tant components that have it fly in the air and
hold out severely structural load. The planform of
the wing has dominant influence on performances
of the airplane. Therefore, the wing design is not
only the kernel of the aircraft design but also the
part required much effort. In this research, CO
is applied to the wing design for a commercial
aircraft of DC-9, considering aerodynamic and
structural disciplines.

The objective is range maximization :

- Vv L (W
Range—SFC D 1n< Wf> (3)

Eq. (3), Brequet range equation, includes lift to
drag ratio (L/D) represented the aerodynamic
performance and weights (W, W;) estimated
from the structure analysis. Because cruise ve-
locity (V), specific fuel consumption (SFC)
and the initial aircraft weight (W;) are constant,
L/D has to be increased and the aircraft weight
after finishing its mission (Wy) must be decreas-
ed to maximize range. By the way, the reduction
of Wy means that the portion of fuel weight
(Wrwer) grows larger in the aircraft weight and
the wing weight (Wymg) becomes smaller rela-
tively. This fact may result in structural failure.
For that reason, we choose constraints as fol-
lows.

» Lift coefficient (Cr) must be larger than the
baseline

* Drag coefficient (Cp) must be smaller than
the baseline .

* Fuel weight { Wwe:) must be smaller than the
baseline.

Other constraints about lift (L) and displace-
ment at the tip of the wing (d,») are selected, too.

» Lift (L) is larger than take-off gross weight.
* Displacement at the tip of the wing (d:») is
within 1% of the baseline.

This design problem is comprised of seven de-
sign variables (semi-span, sweep angle out, sweep
angle in, ¢/Cro: at 30% span, taper ratio, t/c
at root and #/c at tip) as depicted in Fig. 2
and design space consists of parameters related
to the planform of the wing as summarized in
Table 1. ¢/croor at 30% span, taper ratio, ¢/c at
root and f/c at tip are expressed as follows.

sweep angle in

sweep angle out

§§§§ Tew

Fig. 2 Design variables of transport wing

-
c_root N

¢_30% span *

semi-span
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Table 1 Design space of transport wing problem

Design Variables | Minimum | Baseline | Maximum
Semi-span {m) 12.696 14.220 15.744
Sweep angle out (deg)| 19.5 24.5 29.5
Sweep angle in (deg) 23.0 30.0 37.0
¢/Craot at 30% span 0.711 0.761 0.811
Taper ratio 0.184 0.204 0.224
t/c root 0.111 0.131 0.151
t/c tip 0.063 0.083 0.103

O pocits ; 9
o a1 30% spar= chord at 30% position of semi span ¢ 30% span

chord at wing root ¢_root
. chord at wing 1 f
taper ratio - ST =L
chord at wing root ¢_roor @)
4
thickness at wing root 1_root
t/e at root = ==
chord at wing root ¢_root
. thickness at wing i L
tfeat tip = JHCTeSS af Wng 1 =P
: chord at wing tip ¢_tip

The initial value of each design variable is deter-
mined based on DC-9 specification. For this
problem, the flight condition should be like fol-
lowing. The aircraft cruises at 7,620 m above the
ground with Mach number 0.75. Angle of attack
is considered to be zero and take-off gross weight
is 49,000 kg.

4.2 Transform to CO formulation
As shown in Fig. 3, the transport wing design
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Fig. 3 Transport wing design in collaborative
optimization

problem is formulated into two level optimization
consisting of a system level and two subspaces.

* System level
Max.  F(z) =Range
subject to - 2 (xa—2:)*+ 2y —2;)2=0

(aerodynamic compatibility)
Slre=2)+ L0a=2)=0

{strucural compatibility) (5)
where, 2= seven design variables, Cy, Cp, L, Wrer, dip)
x1=[seven design variables], y,=[C., Cp, L]
x2= [seven design variables], yo=| Wees, diw)

o Subspace level . Aerodynamics
Max.  glnm, ) =2(xa—2i)2+;(%1_2j)2

subject to - Cr 2 Crpasetine
Co< Cp,pasetme
L > take-off gross weight
where, z=]seven design variables, C;, Cp, L]
1= seven design variables], y=[Cy, Cp, L]

o Subspace level . Structure
Max.  @&(x, ) :E(Xa*zi)z‘}'g(y;z“zj)z

subject to quezé quel,baseme
| dip| 0.01 X dip, paserine (7)
where, z2=1seven design variables, Wper, dro)
12=[seven design variables], yo={ W, dp)

The system level maximizes range subject to the
compatibility conditions, and sends each sub-
space the target values (z) including seven design
variables and the interdisciplinary outputs (Cy,
Cp and L to ‘aerodynamic subspace, Wyue: and
dip to structural subspace) . In this process, x1, xz,
w1 and y, are treated as fixed parameters. After
each subspace receives target values from the
system level, aerodynamic subspace finds x; and
y1 to minimize the interdisciplinary compatibili-
ty {g) with satisfying C;, Cp and L constraints.
Concurrently, structural subspace also searches
for x2 and y, to minimize itself objective function
(g) subject to Wy and dup conditions. And
then, subspaces return x), X2, y1 and 3o to the
system level. Repeated this process and finished
the optimization, the target values (z) in the sys-
tem level agree to design variables (x) and res-
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Table 2 Results of regression analysis for response surface models. (Transport wing)

Range CL Cp Lift Wiger dup
R? 0.9994 0.9999 0.9991 0.9999 0.9999 0.9999
Ri; 0.9992 0.9999 0.9987 0.9999 0.9999 0.9999
RMS 0.0064 0.0001 0.0098 0.0003 0.0002 0.0001

ponses (y) in the subspace level because of the
compatibility constraints in the system level.

4.3 Disciplinary analyses

For disciplinary analyses, vortex lattice method
(VLM) is used for aerodynamic analysis and
Wing-box modeling for structural analysis. The
original code is decomposed along aerodynam-
ic and structural disciplines. Here, Weissinger
method is applied as a VLM, in which aerody-
namic force is computed from the planar geome-
try of the lift surface created by the superposition
of vortex filaments, and trapezoidal vortex ring
is distributed on the lift surface to consider the
effect of mean camber line of the wing section. In
addition, Prandtl-Glauert rule is used, under the
assumption of small disturbance, to enable consi-
deration of compressibility. Induced drag, skin-
friction drag, profile drag and wave drag are con-
sidered as to compute total drag. Induced drag is
computed by Treftz Plane analysis, profile drag
by empirical equation and wave drag by Crest-
Critical Mach number method. Besides, the wing
structure is modeled by 20 segments in a direction
of span. Based on the fact that the leading edge
and the trailing edge take a little role in trans-
ferring the load from the wing to the fuselage, the
wing-box endures main load applied to the wing.
Upper and lower skin, spar and rib consist of the
wing-box. More details are given in Yoon’s re-
search (Yoon et al., 1999).

4.4 Construction of response surface models
and regression analysis

In this design problem, 144 experimental points

are selected by central-composite design and sec-

ond order full polynomial regression model is

used to build the response surface models for

Range, Ci, Cp, L/D, Wyyer and dyp. For the

validation of response surface models construct-
ed, R? and R%; and Root Mean Square (RMS)
are estimated and summarized in Table 2. B2, is
more than 0.99 for all response surface models,
which shows that response surface models catch
the characteristics of the design space.

4.5 Optimization results of the transenic

wing

As CO using GA and response surface method
is performed, the range increases from 3081.6 km
of the baseline to 4053.6 km. Also the same design
problem is solved by MDF and the original CO,
to compare with their results. MDF is used and
gradient-based method is applied as an optimiza-
tion algorithm (SQPis used). The biggest differ-
ence between these two MDO methods is whether
the problem is decomposed in line with disci-
plines. In implementing of the wing design by
MDF, aerodynamic and structural analyses are
conducted together. Results are represented in
Table 3 and Fig. 4.

The optimized semi-span is longer and sweep
angles are smaller than that of the baseline.
Moreover, L/D is increased by about 30% in the
aerodynamic discipline and, Wymg is grown but
Wiuer is almost constant in Table 3 since the
optimization of the structural discipline is sub-
jected to the change of Wy, As mentioned

- -~ Baseline

—— CO{GA*RSW)

o CO (original)

Fig. 4 Optimized wing planform. (Transport wing)
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Table 3 Comparison of the Optimization Results. (Transport wing)

Design Variables Baseline MDF (GAS—(I){SM) (origlal)
Semi-span (m) 14.220 14.660 14.678 14.781
Sweep angle out (deg) 24.5 19.5 19.6 19.5
Sweep angle in (deg) 30.0 252 25.0 <251
¢/croor at 30% span 0.761 0.780 0.783 0.775
Taper ratio 0.204 0.205 0.204 0.205
t/c root 0.131 0.111 0.111 0.111
t/c tip 0.083 0.082 0.082 0.082
Output Values Baseline MDF (GAS—CI){SM) (oriC;ic;al)
L/D 18.79 24.56 24.56 24.54
Wiger (ton) 10.49 10.49 10.55 10.50
Wying (ton) 4.58 5.54 5.54 5.69
Range (km) 3081.6 4028.4 4053.6 4026.6
CPU time (min) 1.1 3 32

above, these results in the improvement of range.

In Table 3, results of CO using GA and re-
sponse surface method have difference of about
0.7% for those of MDF and also same for original
CO. Through this fact, we can confirm that CO
using GA and response surface method shows
good agreement of optimized results with other
MDO methods. Besides, computing time is spent
by 1/10 of conventional CO and comes close to

MDEF.
5. Fighter Wing Design

5.1 Definition

A fighter wing design is applied to CO using
GA and response surface method as a practical
design problem. The wing for a fighter aircraft of
T-50 is modeled simply. As seen in the previous
problem, we conduct multidisciplinary optimiza-
tion consisting of aerodynamic and structural
disciplines.

In general, a supersonic fighter is maneuvered
at various flight conditions. As the single-point
design of the wing, which considers only one
flight condition like the cruise, has no significant
meaning, the multi-point design should be carried
out by taking into account various flight condi-

tions. But, because this study is accomplished to
validate the possibility of CO using GA and
response surface method, the representative flight
condition for the fighter wing and the required
design objectives are carefully selected and deter-
mined as follows.

L/D
CL = CL,baseline
Cp =< Cp,sasetine

dtz‘p < dtip,baseline

Max.
subject to

(8)

The objective function in Eq. (8) means the hig-
her L/D at the cruse speed flight condition is
favorable to extend the flying range. C; and Cp
constraints are selected to meet the requirement
that the aerodynamic performance of a designed
wing should be at least as good as that of the
baseline wing. ds;p constraint means that the wing
tip displacement of the optimized wing must be
less than that of the baseline wing, and plays a
key role in the structural stability of the wing.
The designed wing is structurally more stable and
stiffer than the baseline wing by imposing this
constraint. dsp used for the structural constraint is
measured at the trailing edge.

The design space in this study consists of para-
meters related to the planform and the structural
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Table 4 Design space of fighter wing problem

Design Variables Minimum Baseline Maximum
Sweep angle (deg) 30.0 35.0 40.0
Aspect ratio 2.5 35 4.5
Twist (deg) 0.0 —2.5 —5.0
Ref. area 1.211 1.346 1.480
Taper ratio 0.216 0.240 0.264
Thickness of root lower skin (cm) 0.0 0.24 0.52
Thickness of tip lower skin (cm) 0.0 0.24 0.52
Thickness of root upper skin (cm) 0.0 0.24 0.52
Thickness of tip upper skin (cm) 0.0 0.24 0.52

7

£

sweep angle

i

Taper ratio =
AR =b%5

¢_tip / ¢_root

c_root
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Fig. 5 Design variables of fighter wing

skin thickness of the wing as summarized in Table
4. The sweep angle, the aspect ratio (AR), the
linear twist angle, the area and the taper ratio of
wing are chosen for the design variables, which
determine the wing planform uniquely. Its design
variables are well depicted in Fig. 5.

Four structural design variables are added to
determine the upper and lower wing skin thick-
ness. From the minimum thickness determined by
the structural ultimate loading conditions, the
skin thickness of the wing root and tip are in-
creased by the amount of the structural design
variables and the skin thicknesses of the interme-
diate region are determined by the linear inter-
polation between the skin thicknesses of the wing
root and tip.

The number of design variables is 9 in total,
and the ranges of design variables are summariz-
ed in Table 4. Here, the main wing of T-50 is
selected as the baseline wing of the optimization.
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N\
SUBSPACE LEVEL OPTIMIZER | SUBSPACE LEVEL OPTIMIZER 2 §
1 SQP

Goat : Min. interdisciplinary compatibility 8
s.L C >0.2565 sl dy <0275 é

; God « Min, interdisciplinary compatibility iﬁg
| ;< 00072 §

v ¥

AERGUYNAMIC ANALYSIS % STRUCTURE ANALYSIS %
Response surface ] : Response surface §
_ WMWWWM S

Fig. 6 Fighter wing design in collaborative
optimization

The aircraft cruises at 12,000 m above the ground
with Mach number 0.87 and angle of attack is two
degree.

5.2 Transform to CO formulation

As shown in Fig. 6, the fighter wing design
problem is formulated into CO consisting of a
system level and two subspaces.

o System level
Max. F(2)=L/D
subject to Z( x1—2) 4+ 2 (ya—2) =0

J
(aerodynamtc compatibility)
Zi! (x2—2) 2+; (ya—2)*= (9)

(strucural compatibility)
where, z=nine design variables, Cy, Cp, dip)
%= five design variables), w=[C., Cp)
1= nine design variables), y,=[d:p)
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s Subspace level . Aerodynamics
Max. g, y) =2(xa~2)"+2ya—2)°

A

subject 10 Cy 2 C paseine

10
Co< Cp,pasetine (10
where, z=| five design variables, C, Cp)
5= five design variables], yy=[C, Cp)
* Subspace level . Structure
Max. gz(xz, yz> =Ei](xa~zf)2+2(yjz—2j>2
subject 10 dip< dsp,baseimne (1)

where, z= nine design variables, d)
%2= [ nine design variables], v:=[dp)

From Egs. (9) ~ (11), one thing has to be pointed
out. The aerodynamic subspace only has five
design variables to prune aerodynamic analysis of
irrelevant structural variables such as skin thick-
ness, viz sweep angle, aspect ratio, twist angle,
wing area and taper ratio. But the structural sub-
space treats nine design variables in total.

The system level maximizes L/D subject to
the compatibility conditions, treating xi, X2, 3
and y. as fixed parameters. And then, it sends
the target values (z) to the aerodynamic and the
structural subspace. Here, the aerodynamics sub-
space receives five design variables and interdis-
ciplinary outputs (Cp and Cp) and the structural
subspace takes nine design variables and dp.

After given the target values from the system
level, the aerodynamic subspace is conducted to
get optimum values that minimize discrepancy
(g1) between target values and design variables
with satisfying C:, and Cp constraints. Concur-
rently, the structural subspace also searches for
x2 and y» to minimize the interdisciplinary com-
patibility (gz) subject to dtip conditions. Each
discipline determines its own new values for the
subspace design variables (x; and x2) and the
interdisciplinary responses (y; and y3). The new
values of the subspace design variables have dif-
ferent values according to disciplines and they are
again sent to the system level to further improve
the design.

This process is repeated until the design gets
maximum L/D and satisfies all constraints at the
same time.
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5.3 Disciplinary Analyses

For disciplinary analyses, three-dimensional
Euler equation for aerodynamic analysis and
nine-node shell mixed finite element method for
structural analysis are used. The original code is
decomposed along aerodynamic and structural
disciplines.

For aerodynamics, the three-dimensional Euler
equation is used to calculate the transonic aero-
dynamic properties of the fighter wing. In this
study, Van Leer’s flux vector splitting is employed
to calculate the Jacobian matrix and Roe’s flux
difference splitting to solve the flux vector. To
increase the order of spatial accuracy, flux vectors
on the cell interface are computed by MUSCL
(Monotone Upstream—centered Schemes for Con-
servation Law) extrapolation scheme. To avoid
the unexpected oscillation of the solution around
the discontinuous flow field, MUSCL scheme is
tapped with Van Albada limiter. In this regard,
Beam-Warming’s AF-ADI (Approximate Facto-
rization-Alternating Direction Implicit) scheme
is employed as time integration method. To ac-
celerate the convergence of the numerical analysis
and reduce the computational time, local time
step, saw tooth cycle multi-grid method and the
implicit residual smoothing are adopted as well.
O-H type grid is used as the wing mesh for com-
putational fluid dynamics (CFD) calculation as
shown in Fig. 7. More detailed aerodynamic

R
At

\

RNk
N

kRt

culation. (O-H type)
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analysis of this study has been described on refer-
ences (Kim et al., 2002a ; 2005 ; Jeon et al., 2004) .

For the structural analysis of the wing, nine-
node shell mixed finite element is utilized. The
element has three translational degrees of freedom
(DOF) and two rotational DOF per node as
shown in Fig. 8 ; therefore, each element has 45
DOF. However, for the modeling of complicated
structures such as wing boxes, the normal direc-
tion of the surface may not be continuous. In such
cases, since the rotational deformation of the
discontinuous surface cannot be expressed with
only two rotational DOFs per node, “drilling
degrees of freedom” is adopted for the elements
(Cook et al., 1989). To combine CFD with com-
putational structural mechanics (CSM), non-
uniform bi-cubic spline composite surface meth-
od is applied to transform CFD mesh to CSM
mesh as depicted in Fig. 9.

To determine the minimum structural size of
the wing components, DaDT (durability and
damage tolerance) allowable method is used for
spar, rib, and lower skin subjected to tension
forces. This method based on that the maximum
principal stress of each element must not exceed
the DaDT allowable stress. Also, the minimum
size of the upper skin thickness is determined to
withstand the buckling whose load is acquired
by the analysis of an idealized equivalent rectan-
gular panel. In the process of the multidiscipli-

z
Y
—
X
Fig. 8 Nine-node shell mixed element

Fig. 9 CSM model of the wing

nary design, the minimum size of the structural
component calculated by the above-mentioned
methods is used as structural constraints (Kim et
al., 2002b ; 2005).

Four structural design variables selected in this
work are most important design parameters be-
cause of the largest compressive and tension
loading.

5.4 Construction of response surface models
and regression analysis

The number of design variables is 9 in total,
and approximately 64 calculations are sufficient
to produce accurate response surface models. 64
experimental points are chosen through the D-
optimal experimental design, and second order
full polynomial regression model is used to build
the response surface models for C;, Cp, L/D and
dep. R* and R%y and Root Mean Square (RMS)
are estimated and summarized in Table 5. RZ%g; is
more than 0.97 for all response surface models,
which guarantees the reliable prediction capabili-
ty of the response surface models.

Table 5 Results of regression analysis for response
surface models. (Fighter wing)

CL Cpi L/D dtip
R? 0.9994 0.9970 0.9991 0.9986
Réy; 0.9956 0.9789 0.9937 0.9904
RMS 0.0254 0.0932 0.0192 0.0867

5.5 Optimization results of the fighter wing

Similarly to the previous problem, CQ using
GA and response surface method is compared
with MDF. On the other hand, if CO or MDF
is performed with analyses of Euler equations
and FEM, it is obvious that the cost is very ex-
pensive. Hence, response surface models are used
as all analyses in this problem and the fighter
wing is optimized. In addition, we only exhibited
results of MDF to validate the accuracy of CO
using GA and response surface method.

As shown in Table 6 and Fig. 10, L/D rises
to about 26% from 35.63 of the baseline to 45.11
of the optimized shape. Besides, we can verify
that results of CO are almost agreed to those of
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Table 6 Comparison of the Optimization Results. (Fighter wing)

Design Variables Baseline MDF (GAS—?(SM)
Sweep angle (deg) 35.0 40.0 40.0
Aspect ratio 35 4.50 4.49
Twist (deg) —2.5 —2.861 —2.921
Ref. area 1.346 1.211 1.211
Taper ratio 0.240 0.231 0.240
Thickness of root lower skin (cm) 0.24 0.46 0.48
Thickness of tip lower skin (cm) 0.24 0.48 0.48
Thickness of root upper skin (cm) 0.24 0.44 0.44
Thickness of tip upper skin (cm) 0.24 0.51 0.51
Output Values MDF (GAS—CI){SM)
CL 0.2565 0.2568 0.2570
Cp 0.0072 0.0057 0.0057
dyp (cm) 0.775 0.774 0.771
L/D 35.63 44.78 45.11
CPU time {min) 1.5 15

Baseline

—-—-—  MDF

CO (GA+RSM)

Fig. 10 Optimized wing planform. (Fighter wing)

MDF. The optimized reference area is decreas-
ed from the baseline, then resulting in the dimi-
nution of lift and drag. By the way, because the
optimizer of aerodynamic discipline is subjected
to the decrease of Cy, there is not loss of C;. In
comparison with MDF and CO using GA and
response surface method, there is about 4% dis-
crepancy for the taper ratio and the thickness of
root lower skin, and within 2% difference for

other variables and outputs. In other words, it is
shown that MDF and CO using GA and re-
sponse surface method have similar optimum.

6. Conclusions

In this research, aircraft wing design problems
are solved using CO that analyses are replaced
with response surface models and the use of GA
is limited to the system level optimization. From
this approach, we can verify that disciplinary
autonomy and accuracy are maintained and it is
also possible to converge efficiently. Based on
results, the following conclusions can be drawn.

First, we could achieve aero-structural multi-
disciplinary optimization of the aircraft wing de-
sign with guaranteeing autonomy of subspaces.
Because the system level controls the discrepancy
of the interdisciplinary variables that each dis-
cipline minimizes, all disciplines don’t directly
communicate with others. Consequently, we could
have maintained the autonomy of subspaces dur-
ing carrying out the optimization design. Second,
CO with response surface models guarantees the
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accuracy of optimum solution and efficient con-
vergence. Results of CO using GA and response
surface method show within 4% difference, com-
pared with conventional MDF and CO. In CPU
time, it spends about 10% of the original CO
on the optimization process. Hence, replacing an-
alyses with response surface models improves
more efficiency of convergence than the original
CO does. Third, since GA has no concern with
the initial condition, the use of GA at the system
level optimizer reduces the difficulty of the con-
vergence caused by the interdisciplinary compati-
bility constraints of the system level. Finally,
through the achievement of two MDO problems,
it has been confirmed that CO using GA and
response surface method might have good possi-
bility of application in real problems. Even if CO
using GA and response surface method requires
more CPU time than MDF, it does not need the
interface to connect with other analyses because it
guarantees the autonomy of each analysis. There-
fore, CO using GA and response surface method
is available for real problems, such as a large-
scale MDO problem.
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