Comparison of Biofilm Removal Characteristics by Chlorine and Monochloramine in Simulated Drinking Water Distribution Pipe

모형 수도관에서 염소와 모노클로라민에 의한 생물막 제거 특성 비교

  • Park, Se-Keun (Department of Environmental Engineering, Kangwon National University) ;
  • Choi, Sung-Chan (Department of Environmental Science & Biotechnology, Hallym University) ;
  • Kim, Yeong-Kwan (Department of Environmental Engineering, Kangwon National University)
  • Published : 2006.01.31

Abstract

This study investigated the characteristics of the biofilm removal by free chlorine or monochloramine. The simulated drinking water distribution pipes on which biofilms had been formed were supplied with tap water containing 0.5, 1.0, 2.0 mg/L of free chlorine or monochloramine residuals. The biofilm removal was characterized by measurement of attached HPC and biomass on pipe surfaces. Chlorine was more effective in both inactivation of attached viable heterotrophic bacteria and removal of biofilm biomass compared to monochloramine. Biofilm matrix was not much eliminated from the surfaces by monochloramine disinfection. Free chlorine residual of 2.0 mg/L was found to be effective in biomass removal. However, biofilm level as low as $10CFU/cm^2$ of attached HPC and $5{\mu}g/cm^2$ of biomass still remained on the surfaces at 2.0 mg/L of chlorine residual. The measurement of biomass appeared to be a useful means in evaluating the characteristics of biofilm removal.

본 연구에서는 염소와 모노클로라민을 이용하여 생물막이 제거되는 특성을 알아보았다. 염소와 모노클로라민을 0.5, 1.0, 2.0 mg/L의 농도로 잔류시킨 수돗물을 생물막이 형성되어 있는 모형 수도관에 연속적으로 공급하고, 관 표면으로부터 부착성 HPC와 biomass를 측정하였다. 염소는 생물막을 구성하는 미생물의 비활성화와 표면으로부터 생물막 matrix를 제거하는데 높은 효과를 나타낸 반면에 모노클로라민은 생물막 matrix를 제거하는데 염소보다 상대적으로 낮은 효율을 나타냈다. 특히 모노클로라민을 이용한 소독 처리에서는 세균과 EPS가 결합된 생물막 matrix가 관 표면으로부터 대부분 제거되지 않은 상태로 존재하였다. 비록 2.0 mg/L의 잔류염소가 생물막 제거에 높은 효과를 보였지만, 관 표면에는 여전히 낮은 수준(<10 $CFU/cm^2$ as 부착성 HPC, <5 ${\mu}g/cm^2$ as biomass)의 생물막이 잔류하고 있었다. 생물막의 제거 특성을 평가하는데 있어서 biomass의 측정이 효과적인 수단인 것으로 판단되었다.

Keywords

References

  1. van der Wende, E. and Characklis, W. G., 'Biofilms in potable water distribution system,' Drinking Water Microbiology: Progress and Recent Developments, McFeters, G. A.(Ed.), Springer-Verlag, New York, pp. 249-268(1990)
  2. LeChevallier, M. W., 'Coliform regrowth in drinking water: a review,' J. AWWA, 82(11), 74-86(1990) https://doi.org/10.1002/j.1551-8833.1990.tb07054.x
  3. Payment, P., 'Poor efficacy of residual chlorine disinfectant in drinking water to inactivate waterborne pathogens in distribution systems,' Can. J. Microbiol., 45, 709-715(1999) https://doi.org/10.1139/cjm-45-8-709
  4. LeChevallier, M. W., Cawthon, C. D., and Lee, R. G., 'Inactivation of biofilm bacteria,' Appl. Environ. Microbiol., 54(10), 2492-2499(1988)
  5. Neden, D. G., Jones, R. J., Smith, J. R., Kirmeyer, G. J., and Foust, G. W., 'Comparing chlorination and chloramination for controlling bacterial regrowth,' J AWWA, 84(7), 80 - 88(1992)
  6. Momba, M. N. B., Cloete, T. E., Venter, S. N., and Kfir, R., 'Evaluation of the impact of disinfection processes on the formation of biofilms in potable surface water distribution systems,' Water Sci. Technol., 38(8-9), 283-289(1998) https://doi.org/10.1016/S0273-1223(98)00703-3
  7. Hass, C. N., 'Disinfection,' Water Quality and Treatment: A Handbook of Community Water Supplies, Letterman, R. D.(Ed.), McGraw-Hill, New York, NY, pp. 877-932(1999)
  8. APHA, AWWA, and WEF, Standard Methods for the Examination of Water and Wastewater, 20th ed., Washington, DC(1998)
  9. Gagnon, G. A. and Slawson, R. M., 'An efficient biofilm removal method for bacterial cells exposed to drinking water,' J Microbial. Meth., 34, 203 - 214(1999) https://doi.org/10.1016/S0167-7012(98)00089-X
  10. Chandy, J. P. and Angles, M. L., 'Determination of nutrients limiting biofilm formation and the subsequent impact on disinfectant decay,' Water Res., 35(11), 2677 - 2682(2001) https://doi.org/10.1016/S0043-1354(00)00572-8
  11. Bradford, M. M., 'A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,' Anal. Biochem., 72, 248-254(1976) https://doi.org/10.1016/0003-2697(76)90527-3
  12. Underwood, G. J. C., Paterson, D. M., and Parkes, R. J., 'The measurement of microbial carbohydrate exopolymers from intertidal sediments,' Limmol. Oceanogr., 40, 1243 -1253(1995) https://doi.org/10.4319/lo.1995.40.7.1243
  13. Park, S. K., Pak, K. R., Choi, S. C., and Kim, Y. K., 'Evaluation of bioassays for analyzing biodegradable dissolved organic carbon in drinking water,'. J Environ. Sci. Health Part A, 39(1), 103-112(2004) https://doi.org/10.1081/ESE-120027371
  14. Jacangelo, J. G. and Olivieri, V. P., 'Aspects of the mode of action of monochloramine,' Water Chlorination, Chemistry, Environmental Impact and Health Effects, Jolley, R. L., Bull, R. J., Davis, W. P., Katz, S., Roberts, M. H. Jr., and Jacobs, V. A.(Eds.), Lewis Publishers Inc., Chelsea, MI, pp. 575 - 586(1985)
  15. Chapman, J. S., 'Disinfectant resistance mechanisms, crossresistance, and co-resistance,' Intl. Biodeter. & Biodegra., 51, 271 -276(2003) https://doi.org/10.1016/S0964-8305(03)00044-1
  16. Cloete, T. E., 'Resistance mechanisms of bacteria to antimicrobial compounds,' Intl. Biodeter. & Biodegra., 51, 277 - 282(2003) https://doi.org/10.1016/S0964-8305(03)00042-8
  17. Lisle, J. T., Broadaway, S. C., Prescott, A. M., Pyle, B. H., Fricker, C., and McFeters, G. A., 'Effects of starvation on physiological activity and chlorine disinfection resistance in Escherichia coli Ol57:H7,' Appl. Environ. Microbiol., 64(12), 4658 -4662(1998)
  18. Stewart, M. H. and Olson, B. H., 'Physiological studies of chloramine resistance developed by Klebsiella pneumoniae under low-nutrient growth conditions,' Appl. Environ. Microbiol., 58(9), 2918-2927(1992)
  19. Flemming, H. -C., Wingender, J., Griebe, T., and Mayer, C., 'Physico-chemical properties of biofilms,' Biofilms: Recent Advances in Their Study and Control, Evans, L. V.(Ed.), Harwood Academic Publishers, Amsterdam, pp. 19 - 34(2000)