Plasmatron Development for a Hydrogen Production

수소 생성을 위한 플라즈마트론 개발

  • Published : 2006.01.31

Abstract

The purpose of this paper is to investigate the optimal condition of the SynGas production by reforming of propane using plasmatron. Plasma was generated by air and arc discharge. The effects of applied steam, $CO_2$ or Ni-catalyst on propane conversion, yield of hydrogen and $H_2/CO$ ratio as well as correlation of syngas were studied. When the variations of $O_2/C_3H_8$ flow ratio, $H_2O/C_3H_8$ flow ratio and $CO_2/C_3H_8$ flow ratio were $0.94{\sim}1.48,\;4.3{\sim}10\;and\;0.8{\sim}3.05$ respectively, Under the condition mentioned above, result of $H_2O/C_3H_8$ flow ratio was maximum $H_2$ concentration, or $28.2{\sim}31.6%$, and result of $H_2O/C_3H_8$ flow ratio with catalyst was minimum CO concentration or $6.6{\sim}7.1%$ and the ratio of hydrogen to carbon monoxide($H_2/CO$) were $3.89{\sim}4.86$.

본 논문에서는 plasmatron을 사용하여 프로판의 개질에 의해 SynGas 생산의 최적의 조건을 연구하였다. 플라즈마는 공기와 아크 방전에 의해 생성되며 합성 가스의 상관 관계뿐만 아니라 수증기, $CO_2$ 또는 반응기에 촉매를 추가하여 프로판 전환에 미치는 영향과 수소의 수율, $H_2/CO$ 비에 대해 연구하였다. $O_2/C_3H_8$ 유량비, $H_2O/C_3H_8$ 유량비와 $CO_2/C_3H_8$ 유량비를 각각 $0.94{\sim}1.48,\;4.3{\sim}10$$0.8{\sim}3.05$로 변화하였을 때, $H_2O/C_3H_8$ 유량비의 변화 결과가 최대 $28.2{\sim}31.6%$$H_2$ 농도를 나타냈으며, 촉매를 추가하고 $H_2O/C_3H_8$ 유량비의 변화결과 $6.6{\sim}7.1%$의 최소 CO 농도를 나타냈다. 그리고 $H_2/CO$ 비는 $3.89{\sim}4.86$을 나타냈다.

Keywords

References

  1. Beckhaus, P., Heinzel, A., Mathiak, J. J., and Roes, J., 'Dynamic of $ H_2 $production by steam reforming,' J Power Sources, 127, 294-299(2004) https://doi.org/10.1016/j.jpowsour.2003.09.026
  2. Andrew, E. L., Robert, W. B., Bromberg, L., and Alex, R., 'Thermodynamic analysis of hydrogen production by partial oxidation reforming,' International Journal of Hydrogen Energy, 29, 809-816(2004) https://doi.org/10.1016/j.ijhydene.2003.09.015
  3. Wang, S. G., Li, Y. W., Lu, J. X., He, M. Y., and Jiao, H. 'A detailed mechanism of thermal $CO_2 $ reforming of $CH_4 $,' J Molecular Structure, 673, 181 - 189(2004) https://doi.org/10.1016/j.theochem.2003.12.013
  4. Bromberg, L., Rabinovich, A., Alexeev, N., and Cohn, D. R., 'Plasma reforming of diesel fuel,' PSFC/JA-99-4 (1999)
  5. Rosocha, L. A., Coates, D. M., Platts, D., and Stange, S., 'Plasma-enhanced combustion of propand using a silent discharge,' Physics of Plasmas, 11(5), 2950-2956(2004) https://doi.org/10.1063/1.1688788
  6. Liu, C. J., Xu, G. H., and Wang, T., 'Non-thermal plasma approches in$CO_2 $utilization,' Fuel Processing Technology, 58, 119 - 134(1999) https://doi.org/10.1016/S0378-3820(98)00091-5
  7. Kim, S. S., Chung, S. H., and Kim, J. G., 'Nonthermal Plasma-assisted Diesel Reforming and Injection of the Reformed Gas into a Diesel Engine for Clean Combustion,' J Korean Society Environmental Eng., 27(4), 394 -401(2005)